Kotlin Flow 背压和线程切换竟然如此相似

前言

上篇分析了Kotlin Flow原理,大部分操作符实现比较简单,相较而言背压和线程切换比较复杂,遗憾的是,纵观网上大部分文章,关于Flow背压和协程切换这块的原理说得比较少,语焉不详,鉴于此,本篇重点分析两者的原理及使用。
通过本篇文章,你将了解到:

  1. 什么是背压?
  2. 如何处理背压?
  3. Flow buffer的原理
  4. Flow 线程切换的使用
  5. Flow 线程切换的原理

1. 什么是背压?

先看自然界的水流:

为了充分利用水资源,人类建立了大坝,以大坝为分界点将水流分为上游和下游。

当上游的流速大于下游的流速,日积月累,最终导致大坝溢出,此种现象称为背压的出现

而对于Kotlin里的Flow,也有上游(生产者)、下游(消费者)的概念,如:

    suspend fun testBuffer1() {
        var flow = flow {
            //生产者
            (1..3).forEach {
                println("emit $it")
                emit(it)
            }
        }

        flow.collect {
            //消费者
            println("collect:$it")
        }
    }

通过collect操作符触发了流,从生产者生产数据(flow闭包),到消费者接收并处理数据(collect闭包),这就完成了流从上游到下游的一次流动过程。

2. 如何处理背压?

模拟一个生产者消费者速度不一致的场景:

    suspend fun testBuffer3() {
        var flow = flow {
            (1..3).forEach {
                delay(1000)
                println("emit $it")
                emit(it)
            }
        }

        var time = measureTimeMillis {
            flow.collect {
                delay(2000)
                println("collect:$it")
            }
        }
        println("use time:${time} ms")
    }

计算流从生产到消费的整个时间:

生产者的速度比消费者的速度快,而它俩都是在同一个线程里顺序执行的,生产者必须等待消费者消费完毕后才会进行下一次生产。
因此,整个流的耗时=生产者耗时(3 * 1000ms)+消费者耗时(3 * 2000ms)=9s。

显而易见,消费者影响了生产者的速度,这种情况下该怎么优化呢?
最简单的解决方案:

生产者和消费者分别在不同的线程执行

如:

    suspend fun testBuffer4() {
        var flow = flow {
            (1..3).forEach {
                delay(1000)
                println("emit $it in thread:${Thread.currentThread()}")
                emit(it)
            }
        }.flowOn(Dispatchers.IO)

        var time = measureTimeMillis {
            flow.collect {
                delay(2000)
                println("collect:$it in thread:${Thread.currentThread()}")
            }
        }
        println("use time:${time} ms")
    }

添加了flowOn()函数,它的存在使得它前面的代码在指定的线程里执行,如flow闭包了的代码都在IO线程执行,也就是生产者在IO线程执行。
而消费者在当前线程执行,因此两者无需相互等待,节省了总时间:

确实是减少了时间,提升了效率。但我们知道开启线程代价还是挺大的,既然都在协程里运行了,能否借助协程的特性:协程挂起不阻塞线程 来完成此事呢?
此时,Buffer出场了,先看看它是如何表演的:

    suspend fun testBuffer5() {
        var flow = flow {
            (1..3).forEach {
                delay(1000)
                println("emit $it in thread:${Thread.currentThread()}")
                emit(it)
            }
        }.buffer(5)

        var time = measureTimeMillis {
            flow.collect {
                delay(2000)
                println("collect:$it in thread:${Thread.currentThread()}")
            }
        }
        println("use time:${time} ms")
    }

这次没有使用flowOn,取而代之的是buffer。
运行结果如下:

可以看出,生产者消费者都是在同一线程执行,但总耗时却和不在同一线程运行时相差无几。
那么它是如何做到的呢?这就得从buffer的源码说起。

3. Flow buffer的原理

无buffer

先看看没有buffer时的耗时:

    suspend fun testBuffer3() {
        var flow = flow {
            (1..3).forEach {
                delay(1000)
                println("emit $it")
                emit(it)
            }
        }

        var time = measureTimeMillis {
            flow.collect {
                delay(2000)
                println("collect:$it")
            }
        }
        println("use time:${time} ms")
    }

从collect开始,依次执行flow闭包,通过emit调用到collect闭包,因为flow闭包里包含了几次emit,因此整个流程会有几次发射。
如上图,从步骤1到步骤8,因为是在同一个线程里,因此是串行执行的,整个流的耗时即为生产者到消费者(步骤1~步骤8)的耗时。

有buffer

在没看源码之前,我们先猜测一下它的流程:

每次emit都发送到buffer里,然后立刻回来继续发送,如此一来生产者没有被消费者的速度拖累。
而消费者会检测Buffer里是否有数据,有则取出来。

根据之前的经验我们知道:collect调用到emit最后到buffer是线性调用的,放入buffer后继续循环emit,那么问题来了:

是谁触发了collect闭包的调用呢?

接下来深入源码,探究答案。

buffer源码流程分析

创建Flow

public fun <T> Flow<T>.buffer(capacity: Int = Channel.BUFFERED, onBufferOverflow: BufferOverflow = BufferOverflow.SUSPEND): Flow<T> {
    var capacity = capacity//buffer容量
    var onBufferOverflow = onBufferOverflow//buffer满之后的处理策略
    if (capacity == Channel.CONFLATED) {
        capacity = 0
        onBufferOverflow = BufferOverflow.DROP_OLDEST
    }
    // create a flow
    return when (this) {
        is FusibleFlow -> fuse(capacity = capacity, onBufferOverflow = onBufferOverflow)
        //走else 分支,构造ChannelFlowOperatorImpl
        else -> ChannelFlowOperatorImpl(this, capacity = capacity, onBufferOverflow = onBufferOverflow)
    }
}

buffer 返回Flow实例,其间涉及几个重要的类和函数:

调用collect
当调用Flow.collect时:

public suspend inline fun <T> Flow<T>.collect(crossinline action: suspend (value: T) -> Unit): Unit =
    collect(object : FlowCollector<T> {
        override suspend fun emit(value: T) = action(value)
    })

构造了匿名内部类FlowCollector,并实现了emit方法,它的实现为collect的闭包。

调用ChannelFlowOperatorImpl.collect最终会调用ChannelFlow.collect:

    override suspend fun collect(collector: FlowCollector<T>): Unit =
        coroutineScope {
            collector.emitAll(produceImpl(this))
        }

    public open fun produceImpl(scope: CoroutineScope): ReceiveChannel<T> =
        scope.produce(context, produceCapacity, onBufferOverflow, start = CoroutineStart.ATOMIC, block = collectToFun)

produceImpl 创建了Channel,内部开启了协程,返回ReceiveChannel。

再来看emitAll函数:

private suspend fun <T> FlowCollector<T>.emitAllImpl(channel: ReceiveChannel<T>, consume: Boolean) {
    ensureActive()
    var cause: Throwable? = null
    try {
        while (true) {
            //挂起等待Channel数据
            val result = run { channel.receiveCatching() }
            if (result.isClosed) {
                //Channel关闭后才会退出循环
                result.exceptionOrNull()?.let { throw it }
                break // returns normally when result.closeCause == null
            }
            //发送数据
            emit(result.getOrThrow())
        }
    } catch (e: Throwable) {
        cause = e
        throw e
    } finally {
        if (consume) channel.cancelConsumed(cause)
    }
}

Channel此时并没有数据,因此协程会挂起等待。

Channel发送
Channel什么时候有数据呢?当然是在调用了Channel.send()函数后。
前面提到过collect之后开启了协程:

  public open fun produceImpl(scope: CoroutineScope): ReceiveChannel<T> =
        scope.produce(context, produceCapacity, onBufferOverflow, start = CoroutineStart.ATOMIC, block = collectToFun)

  internal val collectToFun: suspend (ProducerScope<T>) -> Unit
        get() = { collectTo(it) }

  protected override suspend fun collectTo(scope: ProducerScope<T>) =
        flowCollect(SendingCollector(scope))

此时传入的参数为:collectToFun,最后构造了:

public class SendingCollector<T>(
    private val channel: SendChannel<T>
) : FlowCollector<T> {
    override suspend fun emit(value: T): Unit = channel.send(value)
}

当协程得到执行时,会调用collectToFun-->collectTo(it)-->flowCollect(SendingCollector(scope)),最终调用到:

#ChannelFlowOperatorImpl
    override suspend fun flowCollect(collector: FlowCollector<T>) =
        flow.collect(collector)

而该flow为最开始的flow,collector为SendingCollector。
flow.collect后会调用到flow的闭包,进而调用到emit函数:

    private fun emit(uCont: Continuation<Unit>, value: T): Any? {
        val currentContext = uCont.context
        currentContext.ensureActive()
        //...
        completion = uCont
        return emitFun(collector as FlowCollector<Any?>, value, this as Continuation<Unit>)
    }

emitFun本质上会调用collector里的emit函数,而此时的collector即为SendingCollector,最后调用channel.send(value)

如此一来,Channel就将数据发送出去了,此时channel.receiveCatching()被唤醒,接下来执行emit(result.getOrThrow()),这函数最后会流转到最初始的collect的闭包里。
上面的分析即为生产者到消费者的流转过程,单看源码可能比较乱,看图解惑:

红色部分和绿色部分分别为不同的协程,它俩的关联点即是蓝色部分。

Flow buffer的本质上是利用了Channel进行数据的发送和接收

buffer为啥能提升效率

前面分析过无buffer时生产者消费者的流程图,作为对比,我们也将加入buffer后生产者消费者的流程图。

还是以相同的demo,阐述其流程:

  1. 生产者挂起1s,当1s结束后调用emit发射数据,此时数据放入buffer里,生产者调用delay继续挂起
  2. 此时消费者被唤醒,然后挂起 2s等待
  3. 第2s到来之时,生产者调用emit发送数据到buffer里,继续挂起
  4. 第2s到来之时,消费者结束挂起,消费数据,然后继续挂起2s
  5. 第3s到来之时,生产者继续生产数据,而后生产者退出生产
  6. 第5s到来之时,消费者挂起结束,消费数据,然后继续挂起2s
  7. 第7s到来之时,消费者挂起结束,消费结束,此时因为channel里已经没有数据了,退出循环,最终消费者退出

由此可见,总共花费了7s。

ps:协程调度时机不同,打印顺序可能略有差异,但总体耗时不变。

至此,我们找到了buffer能够提高效率的原因:

生产者、消费者运行在不同的协程,挂起操作不阻塞对方

抛出一个比较有意思的问题:以下代码加buffer之后效率会有提升吗?

    suspend fun testBuffer6() {
        var flow = flow {
            (1..3).forEach {
                println("emit $it")
                emit(it)
            }
        }
        var time = measureTimeMillis {
            flow.collect {
                delay(2000)
                println("collect:$it")
            }
        }
        println("use time:${time} ms")
    }

在未实验之前,如果你已经有答案,恭喜你已经弄懂了buffer的本质。

4. Flow 线程切换的使用

    suspend fun testBuffer4() {
        var flow = flow {
            (1..3).forEach {
                delay(1000)
                println("emit $it in thread:${Thread.currentThread()}")
                emit(it)
            }
        }.flowOn(Dispatchers.IO)

        var time = measureTimeMillis {
            flow.collect {
                delay(2000)
                println("collect:$it in thread:${Thread.currentThread()}")
            }
        }
        println("use time:${time} ms")
    }

flowOn(Dispatchers.IO)表示其之前的操作符(函数)都在IO线程执行,如这里的意思是flow闭包里的代码在IO线程执行。
而其之后的操作符(函数)在当前的线程执行。
通常用在子线程里获取网络数据(flow闭包),然后再collect闭包里(主线程)更新UI。

5. Flow 线程切换的原理

public fun <T> Flow<T>.flowOn(context: CoroutineContext): Flow<T> {
    checkFlowContext(context)
    return when {
        context == EmptyCoroutineContext -> this
        this is FusibleFlow -> fuse(context = context)
        else -> ChannelFlowOperatorImpl(this, context = context)
    }
}

看到这你可能已经有答案了:这不就和buffer一样的方式吗?
但仔细看,此处多了个上下文:CoroutineContext。
CoroutineContext的作用就是用来决定协程运行在哪个线程。

前面分析的buffer时,我们的协程的作用域是runBlocking,即使生产者、消费者在不同的协程,但是它们始终在同一个线程里执行。
而使用了flowOn指定线程,此时生产者、消费者在不同的线程运行协程。
因此,只要弄懂了buffer原理,flowOn原理自然而然就懂了。

以上为Flow背压和线程切换的全部内容,下篇将分析Flow的热流。
本文基于Kotlin 1.5.3,文中完整Demo请点击

您若喜欢,请点赞、关注、收藏,您的鼓励是我前进的动力

持续更新中,和我一起步步为营系统、深入学习Android/Kotlin

1、Android各种Context的前世今生
2、Android DecorView 必知必会
3、Window/WindowManager 不可不知之事
4、View Measure/Layout/Draw 真明白了
5、Android事件分发全套服务
6、Android invalidate/postInvalidate/requestLayout 彻底厘清
7、Android Window 如何确定大小/onMeasure()多次执行原因
8、Android事件驱动Handler-Message-Looper解析
9、Android 键盘一招搞定
10、Android 各种坐标彻底明了
11、Android Activity/Window/View 的background
12、Android Activity创建到View的显示过
13、Android IPC 系列
14、Android 存储系列
15、Java 并发系列不再疑惑
16、Java 线程池系列
17、Android Jetpack 前置基础系列
18、Android Jetpack 易学易懂系列
19、Kotlin 轻松入门系列
20、Kotlin 协程系列全面解读

作者:小鱼人爱编程
链接:https://juejin.cn/post/7172957388348063780

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,039评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,223评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,916评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,009评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,030评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,011评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,934评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,754评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,202评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,433评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,590评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,321评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,917评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,568评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,738评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,583评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,482评论 2 352

推荐阅读更多精彩内容