hadoop2.X Partitioner编程

Partitioner就是对map输出的key进行分组,不同的组可以指定不同的reduce task处理;

**1.Partitioner分区类的作用是什么?
**
在进行MapReduce计算时,有时候需要把最终的输出数据分到不同的文件中,比如按照省份划分的话,需要把同一省份的数据放到一个文件中;按照性别划分的话,需要把同一性别的数据放到一个文件中。我们知道最终的输出数据是来自于Reducer任务。那么,如果要得到多个文件,意味着有同样数量的Reducer任务在运行。Reducer任务的数据来自于Mapper任务,也就说Mapper任务要划分数据,对于不同的数据分配给不同的Reducer任务运行。Mapper任务划分数据的过程就称作Partition。负责实现划分数据的类称作Partitioner。

**2.getPartition()三个参数分别是什么?
**

**3.numReduceTasks指的是设置的Reducer任务数量,默认值是是多少?
**
HashPartitioner是处理Mapper任务输出的,getPartition()方法有三个形参,key、value分别指的是Mapper任务的输出,numReduceTasks指的是设置的Reducer任务数量,默认值是1。那么任何整数与1相除的余数肯定是0。也就是说getPartition(…)方法的返回值总是0。也就是Mapper任务的输出总是送给一个Reducer任务,最终只能输出到一个文件中。
据此分析,如果想要最终输出到多个文件中,在Mapper任务中对数据应该划分到多个区中。那么,我们只需要按照一定的规则让getPartition(…)方法的返回值是0,1,2,3…即可

【实现】
Partitioner编程很简单,只需要新建对应业务的Partitioner类继承Partitioner并实现getPartitioner( )方法,在根据业务进行具体数据分区

【实例】分类电话号码类型(电信、移动、联通、其他)

【1】数据内容

1363157985066   13726230503 00-FD-07-A4-72-B8:CMCC  120.196.100.82  i02.c.aliimg.com        24  27  2481    24681   200
1363157995052   13826544101 5C-0E-8B-C7-F1-E0:CMCC  120.197.40.4            4   0   264 0   200
1363157991076   13926435656 20-10-7A-28-CC-0A:CMCC  120.196.100.99          2   4   132 1512    200
1363154400022   13926251106 5C-0E-8B-8B-B1-50:CMCC  120.197.40.4            4   0   240 0   200
1363157993044   18211575961 94-71-AC-CD-E6-18:CMCC-EASY 120.196.100.99  iface.qiyi.com  视频网站    15  12  1527    2106    200
1363157995074   84138413    5C-0E-8B-8C-E8-20:7DaysInn  120.197.40.4    122.72.52.12        20  16  4116    1432    200
1363157993055   13560439658 C4-17-FE-BA-DE-D9:CMCC  120.196.100.99          18  15  1116    954 200
1363157995033   15920133257 5C-0E-8B-C7-BA-20:CMCC  120.197.40.4    sug.so.360.cn   信息安全    20  20  3156    2936    200
1363157983019   13719199419 68-A1-B7-03-07-B1:CMCC-EASY 120.196.100.82          4   0   240 0   200
1363157984041   13660577991 5C-0E-8B-92-5C-20:CMCC-EASY 120.197.40.4    s19.cnzz.com    站点统计    24  9   6960    690 200
1363157973098   15013685858 5C-0E-8B-C7-F7-90:CMCC  120.197.40.4    rank.ie.sogou.com   搜索引擎    28  27  3659    3538    200
1363157986029   15989002119 E8-99-C4-4E-93-E0:CMCC-EASY 120.196.100.99  www.umeng.com   站点统计    3   3   1938    180 200
1363157992093   13560439658 C4-17-FE-BA-DE-D9:CMCC  120.196.100.99          15  9   918 4938    200
1363157986041   13480253104 5C-0E-8B-C7-FC-80:CMCC-EASY 120.197.40.4            3   3   180 180 200
1363157984040   13602846565 5C-0E-8B-8B-B6-00:CMCC  120.197.40.4    2052.flash2-http.qq.com 综合门户    15  12  1938    2910    200
1363157995093   13922314466 00-FD-07-A2-EC-BA:CMCC  120.196.100.82  img.qfc.cn      12  12  3008    3720    200
1363157982040   13502468823 5C-0A-5B-6A-0B-D4:CMCC-EASY 120.196.100.99  y0.ifengimg.com 综合门户    57  102 7335    110349  200
1363157986072   18320173382 84-25-DB-4F-10-1A:CMCC-EASY 120.196.100.99  input.shouji.sogou.com  搜索引擎    21  18  9531    2412    200
1363157990043   13925057413 00-1F-64-E1-E6-9A:CMCC  120.196.100.55  t3.baidu.com    搜索引擎    69  63  11058   48243   200
1363157988072   13760778710 00-FD-07-A4-7B-08:CMCC  120.196.100.82          2   2   120 120 200
1363157985066   13726238888 00-FD-07-A4-72-B8:CMCC  120.196.100.82  i02.c.aliimg.com        24  27  2481    24681   200
1363157993055   13560436666 C4-17-FE-BA-DE-D9:CMCC  120.196.100.99          18  15  1116    954 200

【2】代码实现

package mr;

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class DataCount {

    public static class DCMapper extends Mapper<LongWritable, Text, Text, DataBean>{

        //------------------map阶段-------------------
        protected void map(LongWritable key, Text value, Context context)
                throws IOException, InterruptedException {
            //accept 
            String line = value.toString();
            //split
            String[] fields = line.split("\t");
            String tel = fields[1];
            long up = Long.parseLong(fields[8]);
            long down = Long.parseLong(fields[9]);  
            DataBean bean = new DataBean(tel, up, down);
            //send
            context.write(new Text(tel), bean);
        }
        
    }
    //-----------------shuffle阶段---------------------
    
    public static class ProviderPartitioner extends Partitioner<Text, DataBean> {

        private static Map<String,Integer> providermap = new HashMap<String,Integer>();
        static{
            /**
             * 假如我们要把电话号码用运营商来分开
             * 1:联通
             * 2:电信
             * 3:移动
             *
             * 在真实项目中,这里可以看成查数据库
             */
            providermap.put("135", 1);
            providermap.put("136", 1);
            providermap.put("137", 1);
            providermap.put("138", 1);
            providermap.put("139", 1);
            providermap.put("150", 2);
            providermap.put("159", 2);
            providermap.put("182", 3);
            providermap.put("183", 3);
        }
        //Partitioner编程的输入参数是map的输出,因为它在map与reduce之间
        @Override
        public int getPartition(Text key, DataBean value, int numPartitions) {
                        //获取电话号码
            String account = key.toString();
                        //截取前三位
            String sub_acc = account.substring(0,3);
                        //通过providermap获取运营商code(providermap的数据在实际业务中大多是查询出来的结果)
            Integer code = providermap.get(sub_acc);
            //如果不是三家运营商,则code设置为0  表示其他
            if(code == null){
                code = 0;
            }
            return code;
        }       
    }
    
    //------------------------------reduce阶段---------------------------
    public static class DCReducer extends Reducer<Text, DataBean, Text, DataBean>{

        @Override
        protected void reduce(Text key, Iterable<DataBean> values, Context context)
                throws IOException, InterruptedException {
            long up_sum = 0;
            long down_sum = 0;
            for(DataBean bean : values){
                up_sum += bean.getUpPayLoad();
                down_sum += bean.getDownPayLoad();
            }
            DataBean bean = new DataBean("", up_sum, down_sum);
            context.write(key, bean);
        }
            
    }
    
    
    public static void main(String[] args) throws Exception {
        Job job = Job.getInstance(new Configuration());
        
        job.setJarByClass(DataCount.class);
        
        job.setMapperClass(DCMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(DataBean.class);
        FileInputFormat.setInputPaths(job, new Path("/mrDemo/input/tel.txt"));
        
        job.setReducerClass(DCReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(DataBean.class);
        FileOutputFormat.setOutputPath(job, new Path("/mrDemo/output/partitioner/tel-data-4"));
        
        //设置要执行的Partitioner类
        job.setPartitionerClass(ProviderPartitioner.class);
        //设置要启动的reduce个数,默认是一个,但这里要使得结果分区,所以就要启动若干个(这里是4个,联通、移动、电信、其他)
        job.setNumReduceTasks(4);
        
        job.waitForCompletion(true);    
    }
}

【3】打jar包上传linux运行

1.png
hadoop jar /root/Destop/mr_jar/tel_Partitioner.jar

【4】结果数据

2016-12-11_023950.png
其他.png
电信.png
移动.png
联通.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,992评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,212评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,535评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,197评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,310评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,383评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,409评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,191评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,621评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,910评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,084评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,763评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,403评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,083评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,318评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,946评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,967评论 2 351

推荐阅读更多精彩内容