pandas是本书后续内容的首选库。
它含有使数据清洗和分析工作变得更快更简单的数据结构和操作工具。pandas经常和其它工具一同使用,如数值计算工具NumPy和SciPy,分析库statsmodels和scikit-learn,和数据可视化库matplotlib。pandas是基于NumPy数组构建的,特别是基于数组的函数和不使用for循环的数据处理。
http://nbviewer.jupyter.org/github/LearnXu/pydata-notebook/tree/master/
虽然pandas采用了大量的NumPy编码风格,但二者最大的不同是pandas是专门为处理表格和混杂数据设计的。而NumPy更适合处理统一的数值数组数据。
自从2010年pandas开源以来,pandas逐渐成长为一个非常大的库,应用于许多真实案例。开发者社区已经有了800个独立的贡献者,他们在解决日常数据问题的同时为这个项目提供贡献。
在本书后续部分中,我将使用下面这样的pandas引入约定:
In [1]: import pandas as pd
因此,只要你在代码中看到pd.,就得想到这是pandas。因为Series和DataFrame用的次数非常多,所以将其引入本地命名空间中会更方便:
In [2]: from pandas import Series, DataFrame
5.1 pandas的数据结构介绍
数据结构其实就是Series和DataFrame。
1 Series
Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一组与之相关的index(即索引)组成。仅由一组数据即可产生最简单的Series:
In [11]: obj = pd.Series([4, 7, -5, 3])
In [12]: obj
Out[12]:
0 4
1 7
2 -5
3 3 #前面一列就是索引
dtype: int64
可以看到,左边表示index,右边表示对应的value。可以通过value和index属性查看:
In [13]: obj.values
Out[13]: array([ 4, 7, -5, 3])
In [14]: obj.index # like range(4)
Out[14]: RangeIndex(start=0, stop=4, step=1)
当然我们也可以自己指定index的label:
In [15]: obj2 = pd.Series([4, 7, -5, 3], index=['d', 'b', 'a', 'c'])
In [16]: obj2
Out[16]:
d 4
b 7
a -5
c 3
dtype: int64
In [17]: obj2.index
Out[17]: Index(['d', 'b', 'a', 'c'], dtype='object')
可以用index的label来选择:
In [18]: obj2['a']
Out[18]: -5
In [19]: obj2['d'] = 6
In [20]: obj2[['c', 'a', 'd']]
Out[20]:
c 3
a -5
d 6
dtype: int64
这里['c', 'a', 'd']其实被当做了索引,尽管这个索引是用string构成的。
使用numpy函数或类似的操作,会保留index-value的关系:
In [21]: obj2[obj2 > 0]
Out[21]:
d 6
b 7
c 3
dtype: int64
In [22]: obj2 * 2
Out[22]:
d 12
b 14
a -10
c 6
dtype: int64
In [23]: np.exp(obj2)
Out[23]:
d 403.428793
b 1096.633158
a 0.006738
c 20.085537
dtype: float64
另一种看待series的方法,它是一个长度固定,有顺序的dict,从index映射到value。在很多场景下,可以当做dict来用:
In [24]: 'b' in obj2
Out[24]: True
In [25]: 'e' in obj2
Out[25]: False
还可以直接用现有的dict来创建series:
In [26]: sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000}
In [27]: obj3 = pd.Series(sdata)
In [28]: obj3
Out[28]:
Ohio 35000
Oregon 16000
Texas 71000
Utah 5000
dtype: int64
series中的index其实就是dict中排好序的keys。我们也可以传入一个自己想要的顺序:
In [29]: states = ['California', 'Ohio', 'Oregon', 'Texas']
In [30]: obj4 = pd.Series(sdata, index=states)
In [31]: obj4
Out[31]:
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
dtype: float64
在这个例子中,sdata中跟states索引相匹配的那3个值会被找出来并放到相应的位置上,但由于"California"所对应的sdata值找不到,所以其结果就为NaN(即“非数字”(not a number),在pandas中,它用于表示缺失或NA值)。因为‘Utah’不在states中,它被从结果中除去。
我将使用缺失(missing)或NA表示缺失数据。pandas的isnull和notnull函数可用于检测缺失数据:
In [32]: pd.isnull(obj4)
Out[32]:
California True
Ohio False
Oregon False
Texas False
dtype: bool
In [33]: pd.notnull(obj4)
Out[33]:
California False
Ohio True
Oregon True
Texas True
dtype: bool
Series也有类似的实例方法:
In [34]: obj4.isnull()
Out[34]:
California True
Ohio False
Oregon False
Texas False
dtype: bool
关于缺失数据,在第七章还会讲得更详细一些。
series中一个有用的特色自动按index label来排序(Data alignment features):
In [35]: obj3
Out[35]:
Ohio 35000
Oregon 16000
Texas 71000
Utah 5000
dtype: int64
In [36]: obj4
Out[36]:
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
dtype: float64
In [37]: obj3 + obj4
Out[37]:
California NaN
Ohio 70000.0
Oregon 32000.0
Texas 142000.0
Utah NaN
dtype: float64
这个Data alignment features(数据对齐特色)和数据库中的join相似。
serice自身和它的index都有一个叫name的属性,这个能和其他pandas的函数进行整合:
In [38]: obj4.name = 'population'
In [39]: obj4.index.name = 'state'
In [40]: obj4
Out[40]:
state
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
Name: population, dtype: float64
series的index能被直接更改:
In [41]: obj
Out[41]:
0 4
1 7
2 -5
3 3
dtype: int64
In [42]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']
In [43]: obj
Out[43]:
Bob 4
Steve 7
Jeff -5
Ryan 3
dtype: int64
2 DataFrame
DataFrame表示一个长方形表格,并包含排好序的列,每一列都可以是不同的数值类型(数字,字符串,布尔值)。DataFrame有行索引和列索引(row index, column index);可以看做是分享所有索引的由series组成的字典。数据是保存在一维以上的区块里的。
(其实我是把dataframe当做excel里的那种表格来用的,这样感觉更直观一些)
构建一个dataframe的方法,用一个dcit,dict里的值是list:
In [2]: import pandas as pd
In [3]: data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'],
...: 'year': [2000, 2001, 2002, 2001, 2002, 2003],
...: 'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}
...:
...: frame = pd.DataFrame(data)
...:
...: frame
...:
Out[3]: #结果DataFrame会自动加上索引(跟Series一样),且全部列会被有序排列
state year pop
0 Ohio 2000 1.5
1 Ohio 2001 1.7
2 Ohio 2002 3.6
3 Nevada 2001 2.4
4 Nevada 2002 2.9
5 Nevada 2003 3.2
如果你使用的是Jupyter notebook,pandas DataFrame对象会以对浏览器友好的HTML表格的方式呈现。
对于一个较大的DataFrame,用head方法会返回前5行(注:这个函数在数据分析中经常使用,用来查看表格里有什么东西):
In [46]: frame.head()
Out[46]:
pop state year
0 1.5 Ohio 2000
1 1.7 Ohio 2001
2 3.6 Ohio 2002
3 2.4 Nevada 2001
4 2.9 Nevada 2002
如果指定一列的话,会自动按列排序:
In [47]: pd.DataFrame(data, columns=['year', 'state', 'pop'])
Out[47]:
year state pop
0 2000 Ohio 1.5
1 2001 Ohio 1.7
2 2002 Ohio 3.6
3 2001 Nevada 2.4
4 2002 Nevada 2.9
5 2003 Nevada 3.2
如果你导入一个不存在的列名,那么会显示为缺失数据:
In [48]: frame2 = pd.DataFrame(data, columns=['year', 'state', 'pop', 'debt'],
....: index=['one', 'two', 'three', 'four',
....: 'five', 'six'])
In [49]: frame2
Out[49]:
year state pop debt
one 2000 Ohio 1.5 NaN
two 2001 Ohio 1.7 NaN
three 2002 Ohio 3.6 NaN
four 2001 Nevada 2.4 NaN
five 2002 Nevada 2.9 NaN
six 2003 Nevada 3.2 NaN
In [50]: frame2.columns
Out[50]: Index(['year', 'state', 'pop', 'debt'], dtype='object')
从DataFrame里提取一列的话会返回series格式,可以以属性或是dict一样的形式来提取:
In [51]: frame2['state']
Out[51]:
one Ohio
two Ohio
three Ohio
four Nevada
five Nevada
six Nevada
Name: state, dtype: object
In [52]: frame2.year
Out[52]:
one 2000
two 2001
three 2002
four 2001
five 2002
six 2003
Name: year, dtype: int64
笔记:frame2[column]适用于任何列的名,但是frame2.column只有在列名存在才适用。
返回的series有DataFrame种同样的index,而且name属性也是对应的。
对于行,要用在loc属性里用 位置或名字(就第几行:
In [53]: frame2.loc['three']
Out[53]:
year 2002
state Ohio
pop 3.6
debt NaN
Name: three, dtype: object
列值也能通过赋值改变。比如给debt赋值:
In [54]: frame2['debt'] = 16.5
In [55]: frame2
Out[55]:
year state pop debt
one 2000 Ohio 1.5 16.5
two 2001 Ohio 1.7 16.5
three 2002 Ohio 3.6 16.5
four 2001 Nevada 2.4 16.5
five 2002 Nevada 2.9 16.5
six 2003 Nevada 3.2 16.5
In [56]: frame2['debt'] = np.arange(6.)
In [57]: frame2
Out[57]:
year state pop debt
one 2000 Ohio 1.5 0.0
two 2001 Ohio 1.7 1.0
three 2002 Ohio 3.6 2.0
four 2001 Nevada 2.4 3.0
five 2002 Nevada 2.9 4.0
six 2003 Nevada 3.2 5.0
如果把list或array赋给column的话,长度必须符合DataFrame的长度。如果把一二series赋给DataFrame,会按DataFrame的index来赋值,不够的地方用缺失数据来表示:
In [58]: val = pd.Series([-1.2, -1.5, -1.7], index=['two', 'four', 'five'])
In [59]: frame2['debt'] = val
In [60]: frame2
Out[60]:
year state pop debt
one 2000 Ohio 1.5 NaN
two 2001 Ohio 1.7 -1.2
three 2002 Ohio 3.6 NaN
four 2001 Nevada 2.4 -1.5
five 2002 Nevada 2.9 -1.7
six 2003 Nevada 3.2 NaN
如果列不存在,赋值会创建一个新列。而del也能像删除字典关键字一样,删除列:
In [61]: frame2['eastern'] = frame2.state == 'Ohio'
In [62]: frame2
Out[62]:
year state pop debt eastern
one 2000 Ohio 1.5 NaN True
two 2001 Ohio 1.7 -1.2 True
three 2002 Ohio 3.6 NaN True
four 2001 Nevada 2.4 -1.5 False
five 2002 Nevada 2.9 -1.7 False
six 2003 Nevada 3.2 NaN False
然后用del删除这一列:
In [63]: del frame2['eastern']
In [64]: frame2.columns
Out[64]: Index(['year', 'state', 'pop', 'debt'], dtype='object')
注意:columns返回的是一个view,而不是新建了一个copy。因此,任何对series的改变,会反映在DataFrame上。除非我们用copy方法来新建一个。
另一种常见的格式是dict中的dict:
In [65]: pop = {'Nevada': {2001: 2.4, 2002: 2.9},
....: 'Ohio': {2000: 1.5, 2001: 1.7, 2002: 3.6}}
把上面这种嵌套dcit传给DataFrame,pandas会把外层dcit的key当做列,内层key当做行索引:
In [66]: frame3 = pd.DataFrame(pop)
In [67]: frame3
Out[67]:
Nevada Ohio
2000 NaN 1.5
2001 2.4 1.7
2002 2.9 3.6
你也可以使用类似NumPy数组的方法,对DataFrame进行转置(交换行和列):
In [68]: frame3.T
Out[68]:
2000 2001 2002
Nevada NaN 2.4 2.9
Ohio 1.5 1.7 3.6
指定index:
In [69]: pd.DataFrame(pop, index=[2001, 2002, 2003])
Out[69]:
Nevada Ohio
2001 2.4 1.7
2002 2.9 3.6
2003 NaN NaN
series组成的dict:
In [70]: pdata = {'Ohio': frame3['Ohio'][:-1],
....: 'Nevada': frame3['Nevada'][:2]}
In [71]: pd.DataFrame(pdata)
Out[71]:
Nevada Ohio
2000 NaN 1.5
2001 2.4 1.7
表5-1列出了DataFrame构造函数所能接受的各种数据。
如果设置了DataFrame的index和columns的name属性,则这些信息也会被显示出来:
In [72]: frame3.index.name = 'year'; frame3.columns.name = 'state'
In [73]: frame3
Out[73]:
state Nevada Ohio
year
2000 NaN 1.5
2001 2.4 1.7
2002 2.9 3.6
values属性会返回二维数组:
In [74]: frame3.values
Out[74]:
array([[ nan, 1.5],
[ 2.4, 1.7],
[ 2.9, 3.6]])
如果column有不同的类型,dtype会适应所有的列(如果DataFrame各列的数据类型不同,则值数组的dtype就会选用能兼容所有列的数据类型:
In [75]: frame2.values
Out[75]:
array([[2000, 'Ohio', 1.5, nan],
[2001, 'Ohio', 1.7, -1.2],
[2002, 'Ohio', 3.6, nan],
[2001, 'Nevada', 2.4, -1.5],
[2002, 'Nevada', 2.9, -1.7],
[2003, 'Nevada', 3.2, nan]], dtype=object)
3 Index Objects (索引对象)
pandas的Index Objects (索引对象)负责保存axis labels和其他一些数据(比如axis name或names)。一个数组或其他一个序列标签,只要被用来做构建series或DataFrame,就会被自动转变为index:
In [76]: obj = pd.Series(range(3), index=['a', 'b', 'c'])
In [77]: index = obj.index
In [78]: index
Out[78]: Index(['a', 'b', 'c'], dtype='object')
In [79]: index[1:]
Out[79]: Index(['b', 'c'], dtype='object')
index object是不可更改的:
In [3]: obj = pd.Series(range(3), index=['a', 'b', 'c'])
In [4]: index = obj.index
In [5]: index[1] = 'd'
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-5-a452e55ce13b> in <module>()
----> 1 index[1] = 'd'
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexes\base.py in __setitem__(self, key, value)
2063
2064 def __setitem__(self, key, value):
-> 2065 raise TypeError("Index does not support mutable operations")
2066
2067 def __getitem__(self, key):
TypeError: Index does not support mutable operations
正因为不可修改,所以data structure中分享index object是很安全的:
In [80]: labels = pd.Index(np.arange(3))
In [81]: labels
Out[81]: Int64Index([0, 1, 2], dtype='int64')
In [82]: obj2 = pd.Series([1.5, -2.5, 0], index=labels)
In [83]: obj2
Out[83]:
0 1.5
1 -2.5
2 0.0
dtype: float64
In [84]: obj2.index is labels
Out[84]: True
注意:虽然用户不需要经常使用Index的功能,但是因为一些操作会生成包含被索引化的数据,理解它们的工作原理是很重要的。
index除了像数组,还能像大小一定的set——set是一个无序且不重复的元素集合。(除了类似于数组,Index的功能也类似一个固定大小的集合:
In [85]: frame3
Out[85]:
state Nevada Ohio
year
2000 NaN 1.5
2001 2.4 1.7
2002 2.9 3.6
In [86]: frame3.columns
Out[86]: Index(['Nevada', 'Ohio'], dtype='object', name='state')
In [87]: 'Ohio' in frame3.columns
Out[87]: True
In [88]: 2003 in frame3.index
Out[88]: False
与python里的set不同,pandas的index可以有重复的labels:
In [89]: dup_labels = pd.Index(['foo', 'foo', 'bar', 'bar'])
In [90]: dup_labels
Out[90]: Index(['foo', 'foo', 'bar', 'bar'], dtype='object')
在这种重复的标签中选择的话,会选中所有相同的标签。
Index还有一些方法和属性: