Sklearn中二分类问题的交叉熵计算

二分类问题的交叉熵

  在二分类问题中,损失函数(loss function)为交叉熵(cross entropy)损失函数。对于样本点(x,y)来说,y是真实的标签,在二分类问题中,其取值只可能为集合{0, 1}. 我们假设某个样本点的真实标签为yt, 该样本点取yt=1的概率为yp, 则该样本点的损失函数为

-log(yt|yp)=-(ytlog(yp)+(1-yt)log(1-yp))

对于整个模型而言,其损失函数就是所有样本点的损失函数的平均值。注意到,对于该损失函数,其值应该为非负值,因为yp的取值在(0,1)之间。

自己实现的方法有问题?

  在Python的sklearn模块中,实现二分类问题的交叉熵损失函数为log_loss()。我们尝试着运行官网中给出的例子,同时,用自己的方法实现该损失函数,其Python代码如下:

from sklearn.metrics import log_loss
from math import log # 自然对数为底

# 二分类的交叉熵损失函数
# 利用sklearn模块的计算结果
y_true = [0, 0, 1, 1]
y_pred = [[.9, .1], [.8, .2], [.3, .7], [.01, .99]]
sk_log_loss = log_loss(y_true, y_pred)
print('Loss by sklearn: %s.'%sk_log_loss)

# 利用公式计算得到的结果
Loss = 0
for label, prob in zip(y_true, y_pred):
    Loss -= (label*log(prob[0])+(1-label)*log(prob[1]))

Loss = Loss/len(y_true)
print('Loss by equation: %s.'% Loss)

在y_pred中,每个样本点都对应一组概率,如果我们把第一个概率作为样本分类为0的概率,第二个概率作为样本分类为1的概率,我们就会得到以下的输出结果:

Loss by sklearn: 0.1738073366910675.
Loss by equation: 2.430291498935543.

我们惊讶的发现,两种方法得到的损失函数值竟然是不一样的。可是,貌似我们的计算公式也没有出问题啊,这到底是怎么回事呢?
  这时候,我们最好的办法是借助源代码的帮助,看看源代码是怎么实现的,与我们的计算方法有什么不一样。

研究sklearn中的log_loss()源代码

  sklearn模块中的log_loss()函数的源代码地址为:https://github.com/scikit-learn/scikit-learn/blob/ed5e127b/sklearn/metrics/classification.py#L1576
  在具体分析源代码之前,我们应该注意以下几点(这也是从源代码中发现的):

  • 损失函数中的对数以自然常数e为底;
  • 预测概率的值有可能会出现0或1的情形,这在公式中是无意义的。因此,该代码使用了numpy中的clip()函数,将预测概率控制在[eps, 1-eps]范围内,其中eps为一个很小的数,避免了上述问题的出现。

  在log_loss()函数中,参数为:y_true, y_pred, eps, normalize, sample_weight,labels,为了分析问题的方便,我们只考虑该函数在所有默认参数取默认值时的情形。y_true为样本的真实标签,y_pred为预测概率。
  对于样本的真实标签y_true, 源代码中的处理代码为:

    lb = LabelBinarizer()

    if labels is not None:
        lb.fit(labels)
    else:
        lb.fit(y_true)
        
    transformed_labels = lb.transform(y_true)

    if transformed_labels.shape[1] == 1:
        transformed_labels = np.append(1 - transformed_labels,
                                       transformed_labels, axis=1)

也就说,当我们的y_true为一维的时候,处理后的标签应当为二维的,比如说,我们输入的y_true为[0,0,1,1],那么处理后的标签应当为:

[[1 0]
 [1 0]
 [0 1]
 [0 1]]

  对于预测概率,源代码中的处理过程为

    # Clipping
    y_pred = np.clip(y_pred, eps, 1 - eps)

    # If y_pred is of single dimension, assume y_true to be binary
    # and then check.
    if y_pred.ndim == 1:
        y_pred = y_pred[:, np.newaxis]
    if y_pred.shape[1] == 1:
        y_pred = np.append(1 - y_pred, y_pred, axis=1)

也就说,当我们的y_true为一维的时候,处理后的标签应当为二维的,这跟处理样本的真实标签y_true是一样的。处理完y_true和y_pred后,之后就按照损失函数的公式得到计算值。

自己实现二分类问题的交叉熵计算

  在我们分析完log_loss的源代码后,我们就能自己用公式来实现这个函数了,其Python代码如下:

from sklearn.metrics import log_loss
from math import log # 自然对数为底

# 二分类的交叉熵损失函数的计算

# y_true为一维,y_pred为二维
# 用sklearn的log_loss函数计算损失函数
y_true = [0,0,1,1]
y_pred = [[0.1,0.9], [0.2,0.8], [0.3,0.7], [0.01, 0.99]]
sk_log_loss = log_loss(y_true,y_pred)
print('Loss by sklearn: %s.'%sk_log_loss)

# 用公式自己实现损失函数的计算
Loss = 0
for label, prob in zip(y_true, y_pred):
    Loss -= ((1-label)*log(prob[0])+label*log(prob[1]))

Loss = Loss/len(y_true)
print('Loss by equation: %s.'% Loss)

# y_true为一维,y_pred为一维
# 用sklearn的log_loss函数计算损失函数
y_true = [0,0,1,1]
y_pred = [0.1, 0.2, 0.3, 0.01]
sk_log_loss = log_loss(y_true,y_pred)
print('Loss by sklearn: %s.'%sk_log_loss)

# 用公式自己实现损失函数的计算
Loss = 0
for label, prob in zip(y_true, y_pred):
    Loss -= ((1-label)*log(1-prob)+label*log(prob))

Loss = Loss/len(y_true)
print('Loss by equation: %s.'% Loss)

运行该函数,输出的结果为:

Loss by sklearn: 1.0696870713050948.
Loss by equation: 1.0696870713050948.
Loss by sklearn: 1.5344117643215158.
Loss by equation: 1.5344117643215158.

  这样我们就用公式能自己实现二分类问题的交叉熵计算了,计算结果与sklearn的log_loss()函数一致。

感悟

  有空就得读读程序的源代码,不仅有助于我们解决问题,还能给我们很多启示,比如log_loss()函数中的np.clip()函数的应用,能很好地避免出现预测概率为0或1的情形。
  log_loss()函数的实现虽然简单,但阅读源代码的乐趣是无穷的。以后也会继续更新,希望大家多多关注。

注意:本人现已开通两个微信公众号: 因为Python(微信号为:python_math)以及轻松学会Python爬虫(微信号为:easy_web_scrape), 欢迎大家关注哦~~

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351

推荐阅读更多精彩内容

  • 该文章为转载文章,作者简介:汪剑,现在在出门问问负责推荐与个性化。曾在微软雅虎工作,从事过搜索和推荐相关工作。 T...
    名字真的不重要阅读 5,233评论 0 3
  • 机器学习术语表 本术语表中列出了一般的机器学习术语和 TensorFlow 专用术语的定义。 A A/B 测试 (...
    yalesaleng阅读 1,961评论 0 11
  • 以西瓜书为主线,以其他书籍作为参考进行补充,例如《统计学习方法》,《PRML》等 第一章 绪论 1.2 基本术语 ...
    danielAck阅读 4,507评论 0 6
  • 昨天放学后,多多和两个好朋友在楼下玩,半小时后,怒气冲冲地往回走了。好像是那俩一起玩,不响应他的号召,所以生气...
    luccy99阅读 125评论 0 0
  • 每次洗完头跟个金毛狮王一样,头发特别燥,特别想知道护发方法和一些好点儿的洗发水,护发素或者发膜、hufa精油之类的...
    张大温柔dream阅读 113评论 0 0