java线程池


title: java线程池
date: 2017-02-03 09:27:23
tags: concurrency
category: concurrency


本篇Blog是《java并发编程的艺术》第九章线程池部分读后总结。

核心参数

public ThreadPoolExecutor(int corePoolSize,
                          int maximumPoolSize,
                          long keepAliveTime,
                          TimeUnit unit,
                          BlockingQueue<Runnable> workQueue) {
    this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
         Executors.defaultThreadFactory(), defaultHandler);
corePoolSize(线程池的基本大小):

​ 当提交一个任务到线程池时,线程池会创建一个线程来执行任务,即使其他空闲的基本线程能够执行新任务也会创建线程,等到需要执行的任务数大于线程池基本大小时就不再创建。如果调用了线程池的prestartAllCoreThreads()方法,线程池会提前创建并启动所有基本线程,代码如下。

public static void main(String[] args) {
    ArrayBlockingQueue<Runnable> arrayBlockingQueue = new ArrayBlockingQueue<>(1);
    ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(1, 2, 60L, TimeUnit.MINUTES, arrayBlockingQueue);
    threadPoolExecutor.prestartAllCoreThreads();
}
maximumPoolSize:线程池的最大线程数

​ 当任务队列已满时,线程池将创建新的线程,直到达到maximumPoolSize

BlockingQueue:核心线程数和最大线程数之间的任务缓冲队列。

比较常见的可使用的阻塞队列:

ArrayBlockingQueue:常见的有界阻塞队列,FIFO

LinkedBlockingQueue:一个基于链表结构的阻塞队列,此队列按FIFO排序元素,吞吐量通常要高于ArrayBlockingQueue。静态工厂方法Executors.newFixedThreadPool()使用了这个队列。

SynchronousQueue:一个不存储元素的阻塞队列。每个插入操作必须等到另一个线程调用移除操作,否则插入操作一直处于阻塞状态,吞吐量通常要高于Linked-Block-ingQueue,静态工厂方法Executors.newCachedThreadPool使用了这个队列。

maximumPoolSize(线程池最大数量):线程池允许创建的最大线程数。如果队列满了,并且已创建的线程数小于最大线程数,则线程池会再创建新的线程执行任务。**值得注意的是,如果使用了无界的任务队列这个参数其实就没意义了,因为任务队列永远不会满,则线程数量永远不会大于corePoolSize。

ThreadFactory:创建线程的工厂。

​ 默认即可。guava提高一种可以自定义线程名称的工厂类,可以提高线程的辨识度。

RejectedExecutionHandler(饱和策略):

​ 当队列和线程池都满了,说明线程池处于饱和状态,那么必须采取一种策略处理提交的新任务。这个策略默认情况下是AbortPolicy,表示无法处理新任务时抛出异常。在JDK 1.5中Java线程池框架提供了以下4种策略。

​ AbortPolicy:直接抛出异常。

​ CallerRunsPolicy:只用调用者所在线程来运行任务。

​ DiscardOldestPolicy:丢弃队列里最近的一个任务,并执行当前任务。

​ DiscardPolicy:不处理,丢弃掉。

当然也可以实现RejectedExceptionHandler自定义处理策略,发邮件,或者记录下来之类的。

keepAliveTime和TimeUnit:

当线程超过线程池corePoolSize后,在一定的时间内没有任务,则kill掉。这是用来规定时间的。取决于任务进入的频率,合理的时间可以避免频繁创建和结束线程。

线程池的工作流程

image.png

ThreadPoolExecutor执行execute方法分下面4种情况。

1)如果当前运行的线程少于corePoolSize,则创建新线程来执行任务(注意,执行这一步骤需要获取全局锁)。

2)如果运行的线程等于或多于corePoolSize,则将任务加入BlockingQueue。

3)如果无法将任务加入BlockingQueue(队列已满),则创建新的线程来处理任务,直到线程数量达到maximumPoolSize。(注意,执行这一步骤需要获取全局锁)。

4)如果创建新线程将使当前运行的线程超出maximumPoolSize,任务将被拒绝,并调用Re-jectedExecutionHandler.rejectedExecution()方法。

​ ThreadPoolExecutor采取上述步骤的总体设计思路,是为了在执行execute()方法时,尽可能地避免获取全局锁(那将会是一个严重的可伸缩瓶颈)。在ThreadPoolExecutor完成预热之后(当前运行的线程数大于等于corePoolSize),几乎所有的execute()方法调用都是执行步骤2,而步骤2不需要获取全局锁。

线程池的关闭

shutdownNow (试图Interrupt所有的任务)

shutdown(试图Interrupt待执行的任务)

2个方法调用后isShutdwon都返回true,但要注意的是只有任务本身可以被Interrupt,处理了Interrupt信号才能被中断,不能的话,该咋样还是咋样。这和线程的中断是一个道理。

线程池的监控

合理的设置线程池的corePoolSize和maxPoolSize,选择合适的BlockingQueue避免资源浪费和等待任务过多。除了预先估算以外,可以通过监控线程池的状态调整。ThreadPoolExecutor提供了一些方法反返回线程池的关键信息。

比如getPoolSize线程池的当期线程数量,getActiveCount之类的。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容