Paper3:Menu-Match:Restaurant-Specific Food Logging from images

&&&The extension:??????

bag of visual words of the recognition framework

multi-labled &multi-class classificaiton

LBP(Local binary patterns)

LLC coding:locality constrained linear encoding

Gabor feature(Gabor filters)

rotation-invariant pooling scheme

super vector regression

1、The initial motivation:be easy to do the food log by takeing a meal image to help deal with the obesity.

1、database:Menu-Match、Pittsburgh food dataset

2、transformation:map the coloria estimation into an identificaiton problem

3、challenging:occlusions、visual information alone can miss some details of food preparation(e.g.,oil,fat content of meats)、accurate volume estimation.

4、related methods:

a novel feature description
local and global features in a voting scheme
bag-of-features model
multiple kernel learning
5、Ideal flow:
Short and accurate but hard to map a image to such ingredients database-based on fundamental nutirtional building  blocks,such as oils,fats,proteins and minerals(eg,one gram of oil contains 8.8 calories)

Coarser but easy to solve visual mapping database-containing food categories or atomic food items

6、Resturant specific recognition:

“the cheeseburger at Joe's at Solo Grill in Toronto”,and then accurate nutritional statistics can be read from the database.

which means the database is linked to the specific resturants and the items is reletated each meal that makes the problem easier without the challenging of occlusion and volume estimation.

7、The pipeline

first localize the resturant,then recognize the image of every food items linked to the restaurants, finally lookup the database to estimate thecalorie。

# the size and ingredietents vary by customes

a、a single image with several food items
b、GPS to localize the resturant where the customer is dietting
c、The menu-match database contains 646 images with 1386 tagged food items across 41 categories.
d、identify the image map intoseveral food items

8、Implementation Details

#follow a publicly available vision libray to extract the features.

a、pre-processing:rescale the image into the largest dimension is 500 pixels.

b、semi-automated food item identification:train a one-vs-rest linear svm by using the concatenated features and then predict the image with multi-labeled and sort the items to choosed by the user.

c、Fully Automated Estimation of food statistics:based on the support vector regression

d、Rotationally invariant pooling:increase the mean average precision for the joint feature.Because the food images are always captured top-down ranther than normal images of sideways,it is better than traditional spatial pyramid pooling.On the other hand,the food is always in the center of the image.

Recognition Framework

A、Extract the features

based on the bag of words approach:five kinds of features are extracted(color,HOG,SIFT,LBP,MR8) .Then code them by LLC followed by the max pooling in a rotation-invariant pooling scheme.

B、Identification

infer to 8(b、c)

C、Estimate the calorie according to the nutirtional table

Summarization:

Pros:A new food database is created to training the one-vs-rest svm and  some challenges can be avoided with this method,which relac some technique to access the image

Cons:The feature extraction is tedious why not use the DeepLearning methods?
         The constraints of the food items in a special resturant which can be not feasible in some situation.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,922评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,591评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,546评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,467评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,553评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,580评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,588评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,334评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,780评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,092评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,270评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,925评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,573评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,194评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,437评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,154评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容