ICML 2016 强化学习相关论文

Neil Zhu,简书ID Not_GOD,University AI 创始人 & Chief Scientist,致力于推进世界人工智能化进程。制定并实施 UAI 中长期增长战略和目标,带领团队快速成长为人工智能领域最专业的力量。
作为行业领导者,他和UAI一起在2014年创建了TASA(中国最早的人工智能社团), DL Center(深度学习知识中心全球价值网络),AI growth(行业智库培训)等,为中国的人工智能人才建设输送了大量的血液和养分。此外,他还参与或者举办过各类国际性的人工智能峰会和活动,产生了巨大的影响力,书写了60万字的人工智能精品技术内容,生产翻译了全球第一本深度学习入门书《神经网络与深度学习》,生产的内容被大量的专业垂直公众号和媒体转载与连载。曾经受邀为国内顶尖大学制定人工智能学习规划和教授人工智能前沿课程,均受学生和老师好评。

ICML 16-全部接受论文

ICML 2016 - 强化学习相关论文 如下:

1. Inverse Optimal Control with Deep Networks via Policy Optimization

Chelsea Finn, UC Berkeley; Sergey Levine, ; Pieter Abbeel, Berkeley

摘要:

http://arxiv.org/abs/1603.00448

Doubly Robust Off-policy Value Evaluation for Reinforcement Learning

Nan Jiang, University of Michigan; Lihong Li, Microsoft

http://arxiv.org/abs/1511.03722

Smooth Imitation Learning

Hoang Le, Caltech; Andrew Kang, ; Yisong Yue, Caltech; Peter Carr,

PAC Lower Bounds and Efficient Algorithms for The Max KK-Armed Bandit Problem

Yahel David, Technion; Nahum Shimkin, Technion

Anytime Exploration for Multi-armed Bandits using Confidence Information

Kwang-Sung Jun, UW-Madison; Robert Nowak,

The Knowledge Gradient for Sequential Decision Making with Stochastic Binary Feedbacks

Yingfei Wang, Princeton University; Chu Wang, ; Warren Powell,

https://arxiv.org/abs/1510.02354

Copeland Dueling Bandit Problem: Regret Lower Bound, Optimal Algorithm, and Computationally Efficient Algorithm

Junpei Komiyama, The University of Tokyo; Junya Honda, The University of Tokyo; Hiroshi Nakagawa, The University of Tokyo

https://arxiv.org/abs/1605.01677

Benchmarking Deep Reinforcement Learning for Continuous Control

Yan Duan, University of California, Berk; Xi Chen, University of California, Berkeley; Rein Houthooft, Ghent University; John Schulman, University of California, Berkeley; Pieter Abbeel, Berkeley

https://arxiv.org/abs/1604.06778

Cumulative Prospect Theory Meets Reinforcement Learning: Prediction and Control

Prashanth L.A., University of Maryland ; Cheng Jie, University of Maryland – College Park; Michael Fu, University of Maryland – College Park; Steve Marcus, University of Maryland – College Park; Csaba Szepesvari, Alberta

http://arxiv.org/abs/1506.02632

An optimal algorithm for the Thresholding Bandit Problem

Andrea LOCATELLI, University of Potsdam; Maurilio Gutzeit, Universität Potsdam; Alexandra Carpentier,

Sequential decision making under uncertainty: Are most decisions easy?

Ozgur Simsek, ; Simon Algorta, ; Amit Kothiyal,

Opponent Modeling in Deep Reinforcement Learning

He He, ; Jordan , ; Hal Daume, Maryland

Softened Approximate Policy Iteration for Markov Games

Julien Pérolat, Univ. Lille; Bilal Piot, Univ. Lille; Matthieu Geist, ; Bruno Scherrer, ; Olivier Pietquin, Univ. Lille, CRIStAL, UMR 9189, SequeL Team, Villeneuve d’Ascq, 59650, FRANCE

Asynchronous Methods for Deep Reinforcement Learning

Volodymyr Mnih, Google DeepMind; Adria Puigdomenech Badia, Google DeepMind; Mehdi Mirza, ; Alex Graves, Google DeepMind; Timothy Lillicrap, Google DeepMind; Tim Harley, Google DeepMind; David , ; Koray Kavukcuoglu, Google Deepmind

https://arxiv.org/abs/1602.01783

Dueling Network Architectures for Deep Reinforcement Learning

Ziyu Wang, Google Inc.; Nando de Freitas, University of Oxford; Tom Schaul, Google Inc.; Matteo Hessel, Google Deepmind; Hado van Hasselt, Google DeepMind; Marc Lanctot, Google Deepmind

http://arxiv.org/abs/1511.06581 Cited by 10

Differentially Private Policy Evaluation

Borja Balle, Lancaster University; Maziar Gomrokchi, McGill University; Doina Precup, McGill

https://arxiv.org/abs/1603.02010

Data-Efficient Off-Policy Policy Evaluation for Reinforcement Learning

Philip Thomas, CMU; Emma ,

https://arxiv.org/abs/1604.00923

Hierarchical Decision Making In Electricity Grid Management

Gal Dalal, Technion; Elad Gilboa, Technion; Shie Mannor, Technion

http://arxiv.org/abs/1603.01840

Generalization and Exploration via Randomized Value Functions

Ian Osband, Stanford; Ben , ; Zheng Wen, Adobe Research

https://arxiv.org/abs/1402.0635 Cited by 9

Scalable Discrete Sampling as a Multi-Armed Bandit Problem

Yutian Chen, University of Cambridge; Zoubin ,

摘要

Drawing a sample from a discrete distribution is one of the building components for Monte Carlo methods. Like other sampling algorithms, discrete sampling suffers from the high computational burden in large-scale inference problems. We study the problem of sampling a discrete random variable with a high degree of dependency that is typical in large-scale Bayesian inference and graphical models, and propose an efficient approximate solution with a subsampling approach. We make a novel connection between the discrete sampling and Multi-Armed Bandits problems with a finite reward population and provide three algorithms with theoretical guarantees. Empirical evaluations show the robustness and efficiency of the approximate algorithms in both synthetic and real-world large-scale problems.

http://arxiv.org/abs/1506.09039

Model-Free Imitation Learning with Policy Optimization

Jonathan Ho, Stanford; Jayesh Gupta, Stanford University; Stefano Ermon,

Improving the Efficiency of Deep Reinforcement Learning with Normalized Advantage Functions and Synthetic Experience

Shixiang Gu, University of Cambridge; Sergey Levine, Google; Timothy Lillicrap, Google DeepMind; Ilya Sutskever, OpenAI

http://arxiv.org/abs/1603.00748

Near Optimal Behavior via Approximate State Abstraction

David Abel, Brown University; David Hershkowitz, Brown University; Michael Littman,

https://cs.brown.edu/~dabel/papers/abel_approx_abstraction.pdf

Model-Free Trajectory Optimization for Reinforcement Learning of Motor Skills

Riad Akrour, TU Darmstadt; Gerhard Neumann

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,142评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,298评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,068评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,081评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,099评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,071评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,990评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,832评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,274评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,488评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,649评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,378评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,979评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,625评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,643评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,545评论 2 352

推荐阅读更多精彩内容

  • 还是有很多东西不舍得丢掉 打卡05-11/17 越是放在后面收拾的,其实是越难割舍的。这个抽屉我打开又关上,关上又...
    静守一隅阅读 180评论 0 0
  • 说在前面的话: UIWebView因为其通用性,在iOS开发中经常被使用到。比如用来在应用内加载某个网页或HTML...
    teanfoo阅读 949评论 0 1