0#00 Tengine 的安装

1.预备知识
2.将Tengine安装在x86平台的电脑上
3.将Tengine 安装在 Arm64 平台上

1. 预备知识

Tengine 官方 github
       Tengine 是OPEN AI LAB 针对前端智能设备开发的软件开发包,核心部分是一个轻量级,模块化,高性能的AI 推断引擎,并支持用DLA、GPU、xPU作为硬件加速计算资源异构加速。
       Tengine特点:
1.对Arm架构进行加速
2.可以直接调用caffe/Tengine等模型
3.只是一个推断引擎,并不支持训练
       使用板子:RK3399
       RK3399特点:
1.CPU特性:6核
2.内置SRAM
3.含有Mali-T864 GPU
4.支持双MIPI CSI,双ISP
       对于我们进行检测,速率足够了。
       使用C语言编译器:CLion
       由于tengine中的代码提供cmake文件,在Clion中可以很好的支持cmake文件的编写,调试和运行。

2. 将Tengine安装在x86平台的电脑上

参考:官方Installation Guide
       目前使用的大部分笔记本电脑是使用x86架构,在x86架构上,无法使用Arm为Arm架构开发的快速计算的包文件,但是还是可以使用通用的BLAS(线性代数)包。
安装过程如下:(Ubuntu 16.04)
1.安装官方的github文件

git clone https://github.com/OAID/tengine/
  1. 为了能使用caffe模型,我们需要安装一些caffe支持包
sudo apt install libprotobuf-dev \
protobuf-compiler \
libboost-all-dev \
libgoogle-glog-dev \

3.为了做图像处理,安装opencv

sudo apt install libopencv-dev

4.编写 makefile.config文件

cd ~/tengine                  # 进入到从github中下载的tengine目录
cp makefile.config.example makefile.config  # 由备份的makefile文件,进行编写适合x86的makefile

编辑makefile.config文件

1.由于不是arm64,所以要注释该行
# Set the target arch 
# CONFIG_ARCH_ARM64=y
2.由于不能使用arm64,所以我们应该使用blas
# Use BLAS as the operator implementation
# 并且需要另外 安装 开源的线性代数库
# sudo apt-get install libopenblas-dev
CONFIG_ARCH_BLAS=y
3.由于我们使用caffe的模型,我们需要使能该行
# Enable other serializers 
CONFIG_CAFFE_SERIALIZER=y

编辑完成,请注意保存
5.进行编译
在 tengine 路径下

make -j4      # j4表示4个线程,进行编译,线程过多可能会发生问题,线程过少,编译过慢

将必要的头文件移动到系统文件中

make install

正常显示:

......(省略)
cp -f core/include/tengine_c_api.h /home/lee/Documents/tengine/install/include
cp -f core/include/cpu_device.h /home/lee/Documents/tengine/install/include
cp -f core/include/tengine_test_api.h /home/lee/Documents/tengine/install/include
cp -f /home/lee/Documents/tengine/build/libtengine.so /home/lee/Documents/tengine/install/lib
  1. 执行测试程序
    测试程序位于
tengine路径/build/tests/bin/bench_sqz

执行可执行文件

./build/tests/bin/bench_sqz -r1    # r1 表示重复1次

正常输出

firefly@firefly:~/tengine$ ./build/tests/bin/bench_sqz
run-time library version: 1.0.0-github  # 2019年1月1日,Tengine发布1.0 版本
REPEAT COUNT= 100
Repeat [100] time 52883.32 us per RUN. used 5288332 us
0.2763 - "n02123045 tabby, tabby cat"
0.2673 - "n02123159 tiger cat"
0.1766 - "n02119789 kit fox, Vulpes macrotis"
0.0827 - "n02124075 Egyptian cat"
0.0777 - "n02085620 Chihuahua"
--------------------------------------
ALL TEST DONE

3. 将Tengine 安装在 Arm64 平台上

       rk3399 和 树莓派 都是使用Arm架构的产品,但是 rk3399 是 64位 产品,树莓派是 32位 的产品。
       OAID对Arm64的优化后的计算速度,比BLAS略快。所以建议在RK3399中使用Arm64的优化。
过程如下:
1.安装官方的github文件(同上)
2.为了能使用caffe模型,我们需要安装一些caffe支持包(同上)
3.为了做图像处理,安装opencv(同上)
4.编写 makefile.config文件(同上)
编辑makefile.config文件

1. 使用arm64架构,所以要使能该段
# Set the target arch 
CONFIG_ARCH_ARM64=y
2.不使用BLAS进行加速
# Use BLAS as the operator implementation
# CONFIG_ARCH_BLAS=y
3.使用caffe模块
# Enable other serializers
CONFIG_CAFFE_SERIALIZER=y

同样我们可以使用GPU进行加速运算
参考:
       ARM Compute Library Driver
       使用GPU的example
总结如下:
       如果我们需要使用GPU,我们需要安装ACL驱动

1.从github将代码拷下来(位于目录 "/home/firefly/ComputeLibrary")
git clone https://github.com/ARM-software/ComputeLibrary.git 
2.进入ComputeLibrary目录
cd ComputeLibrary
3. 版本控制
git checkout v18.05
4.编译
apt-get install scons
scons Werror=1 -j4 debug=0 asserts=1 neon=0 opencl=1 embed_kernels=1 os=linux arch=arm64-v8a

编辑tengine的makefile.config文件,使得支持ACL加速

1. 使用Arm64
# Set the target arch 
CONFIG_ARCH_ARM64=y
2.使用GPU加速
# Enable GPU support by Arm Computing Library
CONFIG_ACL_GPU=y
3.不使用BLAS加速
# Use BLAS as the operator implementation
# CONFIG_ARCH_BLAS=y
4. 指定ACL路径
# Set the path of ACL 
ACL_ROOT=/home/firefly/ComputeLibrary
5.使用caffe模型
# Enable other serializers 
CONFIG_CAFFE_SERIALIZER=y

使用GPU的一些提示:

1.代码提示
    ...(省略)
    while((res=getopt(argc,argv,"d:f:r:"))!=-1)
    {  
      switch(res)
      {  
         case 'd': 
            device = optarg;
            break;
    ...(省略)
    if("" != device)
        set_default_device( device.c_str());
    ...(省略)
2.已经编译过tengine时,请注意删除
      rm -r tengine路径/build/driver

测试样例

./build/tests/bin/bench_sqz -d acl_opencl

5.进行编译(同上)
6.执行测试程序(同上)


到此tengine已经安装完成

54恶

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,711评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,079评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,194评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,089评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,197评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,306评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,338评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,119评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,541评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,846评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,014评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,694评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,322评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,026评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,257评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,863评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,895评论 2 351

推荐阅读更多精彩内容