2.3、2019年11月自行车销售量TOP10城市环比
作业 2.3.1、筛选11月自行车交易数据 赋予变量为gather_customer_order_11
#筛选11月自行车交易数据
gather_customer_order_11 = gather_customer_order[gather_customer_order['create_year_month']=='2019-11']
gather_customer_order_11.head()
作业 2.3.2、将gather_customer_order_11按照chinese_city城市分组,求和销售数量order_num,最终查看11月自行车销售数量前十城市,赋予变量gather_customer_order_city_head
gather_customer_order_city_11= gather_customer_order_11.groupby('chinese_city').apply(lambda x:x['order_num'].sum()).reset_index().rename(columns={0:'order_num'})
#11月自行车销售数量前十城市
gather_customer_order_city_head = gather_customer_order_city_11.sort_values(by='order_num',ascending=False).head(10)
#查看11月自行车销售数量前十城市
gather_customer_order_city_head
作业 2.3.3、根据gather_customer_order_city_head的前十城市,查看10月11月自行车销售数据gather_customer_order_10_11,赋予变量gather_customer_order_10_11_head
city_list=list(gather_customer_order_city_head['chinese_city'].unique())
#筛选销售前十城市,10月11月自行车销售数据
gather_customer_order_10_11_head = gather_customer_order_10_11[gather_customer_order_10_11['chinese_city'].agg(lambda x:x in city_list)]
gather_customer_order_10_11_head.head(10)
作业 2.3.4、根据gather_customer_order_10_11_head,分组计算前十城市,自行车销售数量销售金额,赋予变量gather_customer_order_city_10_11
#分组计算前十城市,自行车销售数量销售金额
gather_customer_order_city_10_11 = gather_customer_order_10_11_head.groupby(['chinese_city','create_year_month']).agg( {'order_num':'sum','sum_amount':'sum'}).reset_index()
作业 2.3.5、根据gather_customer_order_city_10_11,计算前10的销售金额及销售量环比,最终形成结果gather_customer_order_city_10_11如图,方法参照作业2.2.2
#计算前十城市环比
city_top_list = city_list
order_top_x = pd.Series([])
amount_top_x = pd.Series([])
for i in city_top_list:
a=gather_customer_order_city_10_11[gather_customer_order_city_10_11['chinese_city']==i]['order_num'].pct_change().fillna(0) b=gather_customer_order_city_10_11[gather_customer_order_city_10_11['chinese_city']==i]['sum_amount'].pct_change().fillna(0)
order_top_x=order_top_x.append(a)
amount_top_x=amount_top_x.append(b)
#order_diff销售数量环比,amount_diff销售金额环比
gather_customer_order_city_10_11['order_diff']=order_top_x
gather_customer_order_city_10_11['amount_diff']=amount_top_x
gather_customer_order_city_10_11.head(5)
作业 2.3.6、将最终的gather_customer_order_city_10_11的DataFrame存入Mysql的pt_bicy_november_october_city_3当中,请使用追加存储。
#存入数据库
engine = create_engine("mysql://frogdata05:Frogdata!123@106.15.121.232:3306/datafrog05_adventure?charset=utf8")
datafrog05 = engine
gather_customer_order_10_11_group.to_sql('pt_bicy_november_october_city_3',con=datafrog05,if_exists='append')