自行车业务分析 2.3

2.3、2019年11月自行车销售量TOP10城市环比

作业 2.3.1、筛选11月自行车交易数据 赋予变量为gather_customer_order_11

#筛选11月自行车交易数据

gather_customer_order_11 = gather_customer_order[gather_customer_order['create_year_month']=='2019-11']

gather_customer_order_11.head()

作业 2.3.2、将gather_customer_order_11按照chinese_city城市分组,求和销售数量order_num,最终查看11月自行车销售数量前十城市,赋予变量gather_customer_order_city_head

gather_customer_order_city_11= gather_customer_order_11.groupby('chinese_city').apply(lambda x:x['order_num'].sum()).reset_index().rename(columns={0:'order_num'})

#11月自行车销售数量前十城市

gather_customer_order_city_head = gather_customer_order_city_11.sort_values(by='order_num',ascending=False).head(10)

#查看11月自行车销售数量前十城市

gather_customer_order_city_head

作业 2.3.3、根据gather_customer_order_city_head的前十城市,查看10月11月自行车销售数据gather_customer_order_10_11,赋予变量gather_customer_order_10_11_head

city_list=list(gather_customer_order_city_head['chinese_city'].unique())

#筛选销售前十城市,10月11月自行车销售数据

gather_customer_order_10_11_head = gather_customer_order_10_11[gather_customer_order_10_11['chinese_city'].agg(lambda x:x in city_list)]

gather_customer_order_10_11_head.head(10)

作业 2.3.4、根据gather_customer_order_10_11_head,分组计算前十城市,自行车销售数量销售金额,赋予变量gather_customer_order_city_10_11

#分组计算前十城市,自行车销售数量销售金额

gather_customer_order_city_10_11 = gather_customer_order_10_11_head.groupby(['chinese_city','create_year_month']).agg( {'order_num':'sum','sum_amount':'sum'}).reset_index()

作业 2.3.5、根据gather_customer_order_city_10_11,计算前10的销售金额及销售量环比,最终形成结果gather_customer_order_city_10_11如图,方法参照作业2.2.2

#计算前十城市环比

city_top_list = city_list

order_top_x = pd.Series([])

amount_top_x = pd.Series([])

for i in city_top_list:

a=gather_customer_order_city_10_11[gather_customer_order_city_10_11['chinese_city']==i]['order_num'].pct_change().fillna(0)    b=gather_customer_order_city_10_11[gather_customer_order_city_10_11['chinese_city']==i]['sum_amount'].pct_change().fillna(0) 

order_top_x=order_top_x.append(a)

amount_top_x=amount_top_x.append(b)

#order_diff销售数量环比,amount_diff销售金额环比

gather_customer_order_city_10_11['order_diff']=order_top_x

gather_customer_order_city_10_11['amount_diff']=amount_top_x

gather_customer_order_city_10_11.head(5)

作业 2.3.6、将最终的gather_customer_order_city_10_11的DataFrame存入Mysql的pt_bicy_november_october_city_3当中,请使用追加存储。

#存入数据库

engine = create_engine("mysql://frogdata05:Frogdata!123@106.15.121.232:3306/datafrog05_adventure?charset=utf8")

datafrog05 = engine

gather_customer_order_10_11_group.to_sql('pt_bicy_november_october_city_3',con=datafrog05,if_exists='append')

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352