前言
在文章Task执行流程 中介绍了task是怎么被分配到executor上执行的,本文讲解task成功执行时将结果返回给driver的处理流程。
Driver端接收task完成事件
在executor上成功执行完task并拿到serializedResult 之后,通过CoarseGrainedExecutorBackend的statusUpdate方法来返回结果给driver,该方法会使用driverRpcEndpointRef 发送一条包含 serializedResult 的 StatusUpdate 消息给 driver。
execBackend.statusUpdate(taskId, TaskState.FINISHED, serializedResult)
override def statusUpdate(taskId: Long, state: TaskState, data: ByteBuffer) {
val msg = StatusUpdate(executorId, taskId, state, data)
driver match {
case Some(driverRef) => driverRef.send(msg)
case None => logWarning(s"Drop $msg because has not yet connected to driver")
}
}
而在driver端CoarseGrainedSchedulerBackend 在接收到StatusUpdate事件的处理代码如下:
case StatusUpdate(executorId, taskId, state, data) =>
scheduler.statusUpdate(taskId, state, data.value)
if (TaskState.isFinished(state)) {
executorDataMap.get(executorId) match {
case Some(executorInfo) =>
executorInfo.freeCores += scheduler.CPUS_PER_TASK
makeOffers(executorId)
case None =>
// Ignoring the update since we don't know about the executor.
logWarning(s"Ignored task status update ($taskId state $state) " +
s"from unknown executor with ID $executorId")
}
}
- 调用TaskSchedulerImpl的statusUpdate方法来告知task的执行状态以触发相应的操作
- task结束,空闲出相应的资源,将task对应的executor的cores进行跟新
- 结束的task对应的executor上有了空闲资源,为其分配task
这里我们重点看看在TaskSchedulerImpl里面根据task的状态做了什么样的操作:
def statusUpdate(tid: Long, state: TaskState, serializedData: ByteBuffer) {
var failedExecutor: Option[String] = None
var reason: Option[ExecutorLossReason] = None
synchronized {
try {
// task丢失,则标记对应的executor也丢失,并涉及到一些映射跟新
if (state == TaskState.LOST && taskIdToExecutorId.contains(tid)) {
// We lost this entire executor, so remember that it's gone
val execId = taskIdToExecutorId(tid)
if (executorIdToTaskCount.contains(execId)) {
reason = Some(
SlaveLost(s"Task $tid was lost, so marking the executor as lost as well."))
removeExecutor(execId, reason.get)
failedExecutor = Some(execId)
}
}
//获取task所在的taskSetManager
taskIdToTaskSetManager.get(tid) match {
case Some(taskSet) =>
if (TaskState.isFinished(state)) {
taskIdToTaskSetManager.remove(tid)
taskIdToExecutorId.remove(tid).foreach { execId =>
if (executorIdToTaskCount.contains(execId)) {
executorIdToTaskCount(execId) -= 1
}
}
}
// task成功的处理
if (state == TaskState.FINISHED) {
// 将当前task从taskSet中正在执行的task列表中移除
taskSet.removeRunningTask(tid)
//成功执行时,在线程池中处理任务的结果
taskResultGetter.enqueueSuccessfulTask(taskSet, tid, serializedData)
//处理失败的情况
} else if (Set(TaskState.FAILED, TaskState.KILLED, TaskState.LOST).contains(state)) {
taskSet.removeRunningTask(tid)
taskResultGetter.enqueueFailedTask(taskSet, tid, state, serializedData)
}
case None =>
logError(
("Ignoring update with state %s for TID %s because its task set is gone (this is " +
"likely the result of receiving duplicate task finished status updates)")
.format(state, tid))
}
} catch {
case e: Exception => logError("Exception in statusUpdate", e)
}
}
// Update the DAGScheduler without holding a lock on this, since that can deadlock
if (failedExecutor.isDefined) {
assert(reason.isDefined)
dagScheduler.executorLost(failedExecutor.get, reason.get)
backend.reviveOffers()
}
}
task状态为Lost,则标记对应的executor也丢失,并涉及到一些映射跟新和意味着该executor上对应的task的重新分配;还有其他一些状态暂时不做解析。主要看task状态为FINISHED时,通过taskResultGetter的enqueueSuccessfulTask方法将task的的结果处理丢到了线程池中执行:
def enqueueSuccessfulTask(
taskSetManager: TaskSetManager,
tid: Long,
serializedData: ByteBuffer): Unit = {
getTaskResultExecutor.execute(new Runnable {
override def run(): Unit = Utils.logUncaughtExceptions {
try {
// 从serializedData反序列化出result和结果大小
val (result, size) = serializer.get().deserialize[TaskResult[_]](serializedData) match {
// 可直接获取的结果
case directResult: DirectTaskResult[_] =>
// taskSet的总结果大小超过限制
if (!taskSetManager.canFetchMoreResults(serializedData.limit())) {
return
}
directResult.value()
// 直接返回结果及大小
(directResult, serializedData.limit())
// 可间接的获取执行结果,需借助BlockManager来获取
case IndirectTaskResult(blockId, size) =>
// 若大小超多了taskSetManager能抓取的最大限制,则删除远程节点上对应的blockManager
if (!taskSetManager.canFetchMoreResults(size)) {
// dropped by executor if size is larger than maxResultSize
sparkEnv.blockManager.master.removeBlock(blockId)
return
}
logDebug("Fetching indirect task result for TID %s".format(tid))
// 标记Task为需要远程抓取的Task并通知DAGScheduler
scheduler.handleTaskGettingResult(taskSetManager, tid)
// 从远程的BlockManager上获取Task计算结果
val serializedTaskResult = sparkEnv.blockManager.getRemoteBytes(blockId)
// 抓取结果失败,结果丢失
if (!serializedTaskResult.isDefined) {
// 在Task执行结束获得结果后到driver远程去抓取结果之间,如果运行task的机器挂掉,
// 或者该机器的BlockManager已经刷新掉了Task执行结果,都会导致远程抓取结果失败。
scheduler.handleFailedTask(
taskSetManager, tid, TaskState.FINISHED, TaskResultLost)
return
}
// 抓取结果成功,反序列化结果
val deserializedResult = serializer.get().deserialize[DirectTaskResult[_]](
serializedTaskResult.get.toByteBuffer)
// 删除远程BlockManager对应的结果
sparkEnv.blockManager.master.removeBlock(blockId)
// 返回结果
(deserializedResult, size)
}
...
// 通知scheduler处理成功Task
scheduler.handleSuccessfulTask(taskSetManager, tid, result)
} catch {
...
}
}
})
}
- 将serializedData反序列化
- 若是可以直接获取的结果(DirectTaskResult),在当前taskSet已完成task的结果总大小还未超过限制(spark.driver.maxResultSize,默认1G)时可以直接返回其反序列化后的结果。
- 若是可间接获取的结果(IndirectTaskResult),在大小满足条件的前提下,标记Task为需要远程抓取的Task并通知DAGScheduler,从远程的BlockManager上获取Task计算结果,若获取失败则通知scheduler进行失败处理,失败原因有两种:
- 在Task执行结束获得结果后到driver远程去抓取结果之间,如果运行task的机器挂掉
- 该机器的BlockManager已经刷新掉了Task执行结果
- 获取结果远程获取结果成功后删除远程BlockManager对应的结果,则直接返回其序列化后的结果
- 最后将该task对应的TaskSetMagager和tid和结果作为参数通知scheduler处理成功的task
继续跟进scheduler是如何处理成功的task:
def handleSuccessfulTask(
taskSetManager: TaskSetManager,
tid: Long,
taskResult: DirectTaskResult[_]): Unit = synchronized {
taskSetManager.handleSuccessfulTask(tid, taskResult)
}
里面调用了该taskSetManager对成功task的处理方法:
def handleSuccessfulTask(tid: Long, result: DirectTaskResult[_]): Unit = {
val info = taskInfos(tid)
val index = info.index
info.markSuccessful()
// 从线程池中移除该task
removeRunningTask(tid)
// 通知dagScheduler
sched.dagScheduler.taskEnded(tasks(index), Success, result.value(), result.accumUpdates, info)
// 标记该task成功处理
if (!successful(index)) {
tasksSuccessful += 1
logInfo("Finished task %s in stage %s (TID %d) in %d ms on %s (%d/%d)".format(
info.id, taskSet.id, info.taskId, info.duration, info.host, tasksSuccessful, numTasks))
// Mark successful and stop if all the tasks have succeeded.
successful(index) = true
if (tasksSuccessful == numTasks) {
isZombie = true
}
} else {
logInfo("Ignoring task-finished event for " + info.id + " in stage " + taskSet.id +
" because task " + index + " has already completed successfully")
}
// 从失败过的task->executor中移除
failedExecutors.remove(index)
// 若该taskSet所有task都成功执行
maybeFinishTaskSet()
}
逻辑很简单,标记task成功运行、跟新failedExecutors、若taskSet所有task都成功执行的一些处理,我们具体看看是怎么通知dagScheduler的,这里调用了dagScheduler的taskEnded方法:
def taskEnded(
task: Task[_],
reason: TaskEndReason,
result: Any,
accumUpdates: Seq[AccumulatorV2[_, _]],
taskInfo: TaskInfo): Unit = {
eventProcessLoop.post(
CompletionEvent(task, reason, result, accumUpdates, taskInfo))
}
这里像DAGScheduler Post了一个CompletionEvent事件,在DAGScheduler#doOnReceive有对应的处理:
// DAGScheduler#doOnReceive
case completion: CompletionEvent =>
dagScheduler.handleTaskCompletion(completion)
继续看看 dagScheduler#handleTaskCompletion的实现,代码太长,列出主要逻辑部分:
private[scheduler] def handleTaskCompletion(event: CompletionEvent) {
...
val stage = stageIdToStage(task.stageId)
event.reason match {
case Success =>
// 从该stage中等待处理的partition列表中移除Task对应的partition
stage.pendingPartitions -= task.partitionId
task match {
case rt: ResultTask[_, _] =>
// Cast to ResultStage here because it's part of the ResultTask
// TODO Refactor this out to a function that accepts a ResultStage
val resultStage = stage.asInstanceOf[ResultStage]
resultStage.activeJob match {
case Some(job) =>
if (!job.finished(rt.outputId)) {
updateAccumulators(event)
job.finished(rt.outputId) = true
job.numFinished += 1
// If the whole job has finished, remove it
if (job.numFinished == job.numPartitions) {
markStageAsFinished(resultStage)
cleanupStateForJobAndIndependentStages(job)
listenerBus.post(
SparkListenerJobEnd(job.jobId, clock.getTimeMillis(), JobSucceeded))
}
// taskSucceeded runs some user code that might throw an exception. Make sure
// we are resilient against that.
try {
job.listener.taskSucceeded(rt.outputId, event.result)
} catch {
case e: Exception =>
// TODO: Perhaps we want to mark the resultStage as failed?
job.listener.jobFailed(new SparkDriverExecutionException(e))
}
}
case None =>
logInfo("Ignoring result from " + rt + " because its job has finished")
}
// 若是ShuffleMapTask
case smt: ShuffleMapTask =>
val shuffleStage = stage.asInstanceOf[ShuffleMapStage]
updateAccumulators(event)
val status = event.result.asInstanceOf[MapStatus]
val execId = status.location.executorId
logDebug("ShuffleMapTask finished on " + execId)
// 忽略在集群中游走的ShuffleMapTask(来自一个失效的节点的Task结果)。
if (failedEpoch.contains(execId) && smt.epoch <= failedEpoch(execId)) {
logInfo(s"Ignoring possibly bogus $smt completion from executor $execId")
} else {
// 将结果保存到对应的Stage
shuffleStage.addOutputLoc(smt.partitionId, status)
}
// 若当前stage的所有task已经全部执行完毕
if (runningStages.contains(shuffleStage) && shuffleStage.pendingPartitions.isEmpty) {
markStageAsFinished(shuffleStage)
logInfo("looking for newly runnable stages")
logInfo("running: " + runningStages)
logInfo("waiting: " + waitingStages)
logInfo("failed: " + failedStages)
// 将stage的结果注册到MapOutputTrackerMaster
mapOutputTracker.registerMapOutputs(
shuffleStage.shuffleDep.shuffleId,
shuffleStage.outputLocInMapOutputTrackerFormat(),
changeEpoch = true)
// 清除本地缓存
clearCacheLocs()
// 若stage一些task执行失败没有结果,重新提交stage来调度执行未执行的task
if (!shuffleStage.isAvailable) {
// Some tasks had failed; let's resubmit this shuffleStage
// TODO: Lower-level scheduler should also deal with this
logInfo("Resubmitting " + shuffleStage + " (" + shuffleStage.name +
") because some of its tasks had failed: " +
shuffleStage.findMissingPartitions().mkString(", "))
submitStage(shuffleStage)
} else {
// 标记所有等待这个Stage结束的Map-Stage Job为结束状态
if (shuffleStage.mapStageJobs.nonEmpty) {
val stats = mapOutputTracker.getStatistics(shuffleStage.shuffleDep)
for (job <- shuffleStage.mapStageJobs) {
markMapStageJobAsFinished(job, stats)
}
}
}
// Note: newly runnable stages will be submitted below when we submit waiting stages
}
}
...
}
submitWaitingStages()
}
当task为ShuffleMapTask时,该task不是在无效节点的运行的条件下将结果保存到stage中,若当前stage的所有task都运行完毕(不一定成功),则将所有结果注册到MapOutputTrackerMaster(以便下一个stage的task就可以通过它来获取shuffle的结果的元数据信息);然后清空本地缓存;当该stage有task没有成功执行也就没有结果,需要重新提交该stage运行未完成的task;若所有task都成功完成,说明该stage已经完成,则会去标记所有等待这个Stage结束的Map-Stage Job为结束状态。
当task为ResultTask时,增加job完成的task数,若所有task全部完成即job已经完成,则标记该stage完成并从runningStages中移除,在cleanupStateForJobAndIndependentStages方法中,遍历当前job的所有stage,在对应stage没有依赖的job时则直接将此stage移除。然后将当前job从activeJob中移除。
最后调用job.listener.taskSucceeded(rt.outputId, event.result),实际调用的是JobWaiter(JobListener的具体实现)的taskSucceeded方法:
override def taskSucceeded(index: Int, result: Any): Unit = {
// resultHandler call must be synchronized in case resultHandler itself is not thread safe.
synchronized {
resultHandler(index, result.asInstanceOf[T])
}
if (finishedTasks.incrementAndGet() == totalTasks) {
jobPromise.success(())
}
}
这里的resultHandler就是在action操作触发runJob的时候规定的一种结果处理器:
def runJob[T, U: ClassTag](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int]): Array[U] = {
val results = new Array[U](partitions.size)
runJob[T, U](rdd, func, partitions, (index, res) => results(index) = res)
results
}
这里的(index, res) => results(index) = res 就是resultHandler,也就是将这里的results数组填满再返回,根据不同的action进行不同操作。
若完成的task数和totalTasks数相等,则该job成功执行,打印日志完成。