让R像excel一样工作-篇一

Preparation

install.library('tidyverse')

The package tidyverse includes several useful packages using in data analysis, such as ggplot2, phlyr, tidyr. The phlyr is selected to perform the data in this article.

Work Flow

# load the tidyverse package
library(tidyverse)

filter——过滤

The filter() function is used to subset a data frame, retaining all rows that satisfy your conditions. To be retained, the row must produce a value of TRUE for all conditions. Note that when a condition evaluates to NA the row will be dropped, unlike base subsetting with.

# filter(.data, ..., .preserve = FALSE)
# using the iris data
> data(iris)
# display the first five rows of the iris data
> head(iris)
# filter the data and attain the Sepal.Length = 5
> filter(iris, Sepal.Length == 5)

   Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
1             5         3.6          1.4         0.2     setosa
2             5         3.4          1.5         0.2     setosa
3             5         3.0          1.6         0.2     setosa
4             5         3.4          1.6         0.4     setosa
5             5         3.2          1.2         0.2     setosa
6             5         3.5          1.3         0.3     setosa
7             5         3.5          1.6         0.6     setosa
8             5         3.3          1.4         0.2     setosa
9             5         2.0          3.5         1.0 versicolor
10            5         2.3          3.3         1.0 versicolor

> filter(iris, Sepal.Length == 5 & Sepal.Width == 3)

  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1            5           3          1.6         0.2  setosa

Useful filter functions

There are many functions and operators that are useful when constructing the expressions used to filter the data:

  • ==, >, >= etc

  • &, |, !, xor()

  • is.na()

  • between(), near()

Attention:
The filter() will exclude the data contain NA , or you can keep the NA by adding restrictions.

> flower <- iris
> flower[1,1] <- NA
> filter(flower, is.na(flower) | Sepal.Length == 5 )
   Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
1            NA         3.5          1.4         0.2     setosa
2             5         3.6          1.4         0.2     setosa
3             5         3.4          1.5         0.2     setosa
4             5         3.0          1.6         0.2     setosa
5             5         3.4          1.6         0.4     setosa
6             5         3.2          1.2         0.2     setosa
7             5         3.5          1.3         0.3     setosa
8             5         3.5          1.6         0.6     setosa
9             5         3.3          1.4         0.2     setosa
10            5         2.0          3.5         1.0 versicolor
11            5         2.3          3.3         1.0 versicolor

arrange——排序

arrange() orders the rows of a data frame by the values of selected columns.
Unlike other dplyr verbs, arrange() largely ignores grouping; you need to explicitly mention grouping variables (or use .by_group = TRUE) in order to group by them, and functions of variables are evaluated once per data frame, not once per group.

# arrange the Sepal.Width column and then the Species column
> arrange(iris, Petal.Width, Species)
    Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
1            4.9         3.1          1.5         0.1     setosa
2            4.8         3.0          1.4         0.1     setosa
3            4.3         3.0          1.1         0.1     setosa
4            5.2         4.1          1.5         0.1     setosa
5            4.9         3.6          1.4         0.1     setosa
...
47           5.4         3.4          1.5         0.4     setosa
48           5.1         3.8          1.9         0.4     setosa
49           5.1         3.3          1.7         0.5     setosa
50           5.0         3.5          1.6         0.6     setosa
51           4.9         2.4          3.3         1.0 versicolor
52           5.0         2.0          3.5         1.0 versicolor
53           6.0         2.2          4.0         1.0 versicolor
...
# The optional parameters desc() can be used to descend order.

select()——选择

Select (and optionally rename) variables in a data frame, using a concise mini-language that makes it easy to refer to variables based on their name (e.g. a:f selects all columns from a on the left to f on the right). You can also use predicate functions like is.numeric to select variables based on their properties.

# select the Petal.Width column and Species column
> select(iris, Petal.Width, Species)
# select the data from Petal.Width column to Species column
> select(iris, Petal.Width:Species)
# select the data except Petal.Width column to Species column
> select(iris, -c(Petal.Width:Species))

Useful selection skills

Overview of selection features
Tidyverse selections implement a dialect of R where operators make it easy to select variables:

  • : for selecting a range of consecutive variables.

  • ! for taking the complement of a set of variables.

  • & and | for selecting the intersection or the union of two sets of variables.

  • c() for combining selections.

In addition, you can use selection helpers. Some helpers select specific columns:

  • everything(): Matches all variables.

  • last_col(): Select last variable, possibly with an offset.

These helpers select variables by matching patterns in their names:

  • starts_with(): Starts with a prefix.

  • ends_with(): Ends with a suffix.

  • contains(): Contains a literal string.

  • matches(): Matches a regular expression.

  • num_range(): Matches a numerical range like x01, x02, x03.

These helpers select variables from a character vector:

  • all_of(): Matches variable names in a character vector. All names must be present, otherwise an out-of-bounds error is thrown.

  • any_of(): Same as all_of(), except that no error is thrown for names that don't exist.

This helper selects variables with a function:

  • where(): Applies a function to all variables and selects those for which the function returns TRUE.

mutate()——创建新变量

mutate() adds new variables and preserves existing ones; transmute() adds new variables and drops existing ones. New variables overwrite existing variables of the same name. Variables can be removed by setting their value to NULL.

iris_part <- mutate(iris, Sepal.Area = Sepal.Length * Sepal.Width)

Attention: If you only want to preserve the new variables, you can use the transmute() function.

Reference

https://dplyr.tidyverse.org/

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,651评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,468评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,931评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,218评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,234评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,198评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,084评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,926评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,341评论 1 311
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,563评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,731评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,430评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,036评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,676评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,829评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,743评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,629评论 2 354

推荐阅读更多精彩内容