GNN + Semantic Segmentation

1 Semantic Object Parsing with Graph LSTM

——NUS ECCV2016(Spotlight)

1.1 任务描述

semantic object parsing aims to segment an object within an image into multiple parts with more fine-grained semantics and provide full understanding of image contents.

1.2 模型框架

adaptive graph topology(每张图像都是不同的graph topology)

(semantically consistent) node: arbitrary-shaped superpixel

edge: spatial neighborhood relations 空间相邻就连一条边

LSTM starting node: the superpixel node that has the highest predicted confidence across all the foreground semantic labels based on the initial features is regarded as the starting node

Updating order: ranking all the nodes according to their initial confidences on foreground classes in a descending order

Graph construction

Superpixel map: image over-segmentation using SLIC 线性迭代聚类( k均值聚类方法) averagely 1,000

feature maps需要upsample到原始图像大小,和superpixel map对应起来。

node初始特征f_i:同一个superpixel中所有像素特征的平均值

Graph LSTM

initial confidence maps

The confidence of each superpixel for each label: averaging the confidences of its contained pixels, and the label with highest confidence could be assigned to the superpixel

Node updating sequence: Among all the foreground superpixels (i.e., assigned to any semantic part label), the node updating sequence can be determined by ranking all the superpixel nodes according to the confidences of their assigned labels

Confidence-Driven Search表现好的原因: The CDS scheme can provide a relatively more reliable updating sequence for better semantic reasoning, since the earlier nodes in the updated sequence presumably have stronger semantic evidence (e.g., belonging to any important semantic parts with higher confidence) and their visual features may be more reliable for message passing.

Training

1. train the convolutional layer with 1 × 1 filters to generate initial confidence maps that are used to produce the starting node and the update sequence for all nodes in Graph LSTM

2. the whole network is fine-tuned based on the pretrained model to produce final parsing results

1.3 实验结果

PASCAL-Person-Part dataset: Head, Torso, Upper/Lower Arms and Upper/Lower Legs

Horse-Cow Parsing dataset: head, leg, tail and body

ATR dataset & Fashionista dataset: 18 labels: face, sunglass, hat, scarf, hair, upper-clothes, left-arm, right-arm, belt, pants, left-leg, right-leg, skirt, left-shoe, right-shoe, bag, dress and null

每个dataset都是的同一类物体,label是组成该物体的部分,比较符合医疗的分割


2 Interpretable Structure-Evolving LSTM可解释结构演化LSTM

——CMU CVPR2017

论文1的进阶版

2.1 主要思路

hierarchical graph structures
stochastic structure-evolving step

Metropolis-Hasting algorithm: stochastically merging some graph nodes by sampling their merging probabilities, and produces a new graph structure

This structure is further examined and determined according to a global reward defined as an acceptance probability. i) a state transition probability (i.e., a product of the merging probabilities); ii) a posterior probability representing the compatibility of the generated graph structure with task-specific observations.



2.3 实验结果

和论文1的比较

3 3D Graph Neural Networks for RGBD Semantic Segmentation

——CUHK ICCV2017 

RGBD = RGB + Depth Map 

2D appearance + 3D geometric information

Graph construction*

[x,y,z]是已知的还是[u,v]是已知的呢???

node: pixel

directed edges: K nearest neighbors (KNN) in the 3D space

Propagation Model

Prediction Model

back-propagation through time (BPTT) algorithm

4 总结

这是一种更加精细的语义分割

从dataset上看,每个dataset都是的同一类物体,label是组成该物体的部分,

horse-cow dataset 头和身体在颜色上没有明显的边界,但也能分出来,有点像多器官分割里的情况

比较符合医疗的分割



最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,701评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,649评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,037评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,994评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,018评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,796评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,481评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,370评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,868评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,014评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,153评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,832评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,494评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,039评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,156评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,437评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,131评论 2 356