30.串联所有单词的子串

给定一个字符串 s 和一些长度相同的单词 words。找出 s 中恰好可以由 words 中所有单词串联形成的子串的起始位置。
注意子串要与 words 中的单词完全匹配,中间不能有其他字符,但不需要考虑 words 中单词串联的顺序。

示例 1:
输入:
s = "barfoothefoobarman",
words = ["foo","bar"]
输出:[0,9]
解释:
从索引 0 和 9 开始的子串分别是 "barfoo" 和 "foobar" 。
输出的顺序不重要, [9,0] 也是有效答案。

示例 2:
输入:
s = "wordgoodgoodgoodbestword",
words = ["word","good","best","word"]
输出:[]

class Solution {
    public List<Integer> findSubstring(String s, String[] words) {
        List<Integer> res = new ArrayList<Integer>();
        if (words.length == 0) return res;
        int wl = words[0].length();
        int wc = words.length;
        int win = wc * wl; 
        
        Map<String,Integer> map1 = new HashMap<String,Integer>();
        for (String w:words) {
            if (map1.get(w)==null) map1.put(w,0);//put(K key, V value)
            map1.put(w, map1.get(w)+1);
        }
        
        int[] wordNums = new int[map1.size()];
        int i = 0;
        for (Integer n:map1.values()) {
            wordNums[i] = n;
            i++;
        }
        
        int[] f=new int[s.length()];
        int wn=1;
        for(String w:map1.keySet()) {
            int index = -2;
            while(index != -1) {
                if (index == -2) index=-1;
                index = s.indexOf(w, index+1);
                if (index >=0) f[index] = wn;
            }
            wn++;
        }
        
        int[] wordNumsWin = new int[map1.size()];
        for (int j=0;j+win<=s.length();j++) {
            while(f[j]==0) {
                j++;
                if(j+win>s.length()) return res;
            }
            int k=j;
            while(k<j+win) {
                if(f[k] != 0) {
                    wordNumsWin[f[k]-1]++;
                    if (wordNumsWin[f[k]-1] > wordNums[f[k]-1]) break;
                }else break;
                k+=wl;
            }
            if (k==j+win) {
                //compare
                int mm=0;
                for (;mm<map1.size();mm++) {
                    if (wordNumsWin[mm] != wordNums[mm]) break;
                }
                if (mm==map1.size()) res.add(j);
            }
            // clean the wordNumsWin
            for (int mm=0;mm<map1.size();mm++) wordNumsWin[mm] = 0;
        }
        
        return res;
        
    }
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容