用Python分析美股实际收益率

这次的美股例子就选择了美国显卡制造商英伟达,其股票代码是NVDA

首先还是导入各种库。

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import yfinance as yf

这里有一个不太常见的库是yfinance,这是从Yahoo网站获取数据的一个库,其使用非常简单,不需要相关api,同时也是免费的。yfinance直接用pip安装即可。

接下来是获取数据

df = yf.download('NVDA', start='2015-01-02', end='2020-01-01', progress=False)

yfinance下载的数据直接是pandasdataframe格式,这里我们只要输入股票代码以及起止时间就可以了,后面的progress是进度条选项,最好关闭,否则下载好之后结果中会有一个进度条(影响也不大)。这里我们下载英伟达过去5年的股票数据,从2015年1月1日到2019年12月31日。这里有一个问题要注意,就是yfinance的数据获取时间是提前1天的,比如设置起始时间start='2015-01-02',但最终得到的股票数据时间是从2015年1月1日开始的, 同样截止时间end='2020-01-01'也就意味着数据的截止时间是2019年12月31日。下载之后的数据如下图所示。

然后是数据处理。

df = df[['Adj Close']] #这里要用两个[],否则是一个series而不是df
df.rename(columns={'Adj Close':'adj_close'},inplace=True) #改名
df['s_r'] = df/df.shift(1)-1 #计算会计收益率


从下载得到的数据中,我们选取Adj Close这一列,其全称是adjusted close,意思是调整收盘价,这就是我们要用到的数据,将其改名为adj_close,然后用adj_close计算会计收益率(也称简单收益率),即simple returns,将其命名为s_r,方法是用后一天数据除以前一天数据,再减一,当然这里用dataframepct_change方法也可以,得到的结果是一样的。
补充

pandas.DataFrame.pct_change当前元素与先前元素之间的百分比变化。

pandas DataFrame.shift按期望的周期数移动索引,并带有可选的时间频率。

df_dates = pd.DataFrame(index=pd.date_range(start='2015-1-1', end='2019-12-31'))
df = df_dates.join(df) #生成新的dataframe

从前面看到得到的数据的时间是以天为单位的,但这些日期并不连续,中间有部分间断,这是因为股票市场在周末等节假日不开盘,而这里我们为了利用cpi来计算会计收益率,要设计一个连续时间范围,所以这里生成了一个名为df_dates的变量,其时间范围是连续的,从2015年1月1日到2019年12月31日,让其和df合并,得到的数据如下图所示。这里面NaN(not a number)都是节假日不开盘的日期

df=df.fillna(method='ffill').asfreq('M') #填充nan数据,并得出每月最后一个交易日的数据

因为要计算实际收益率,其中使用的cpi(onsumer price index,消费者物价指数)是以为单位的,所以我们也要把df转换成以月为单位,为了避免在每月最后一天是非开盘日,所以首先用了fillna方法,方式是'ffill',即按照前一日数据来填充,然后用asfreq('M')方法来得出每月最后一日的数据。
很多人会问,这个每月最后一日的数据有什么用,因为我们用到的cpi数据都是按月份来公布的,每月只有一个cpi数据,所以我们计算会计收益率时也要按照月份来算,而每月会计收益率就是用这个月的最后一个交易日的调整收盘价除以上个月的最后一个交易日的调整收盘价,然后再减一,和前面每日会计收益率的计算方法一样。然后用月份会计收益率和cpi来计算实际收益率。而我们这次所用到的cpi数据,其时间范围从2015年1月至2019年12月,总共5年,这个数据可以从很多网站下载,直接到网上搜索就行了,放在一个Excel文件中,文件名为cpi_data.xlsx。这个cpi数据的大致内容如下图所示。

cpi = pd.read_excel('cpi_data.xlsx').values #读取美国cpi数据
cpi = cpi[:, 1:].flatten() #把cpi数据从二维降为一维
df['cpi'] = cpi #生成新的列
df['inf_rate'] = df.cpi.pct_change() #计算通货膨胀率
df['r_r']=(df.s_r+1)/(df.inf_rate+1)-1 #计算实际收益率

读取cpi数据之后通过cpi数据计算通货膨胀率,即inflation rate,我们把这一列命名为inf_rate,方法和会计收益率一样,接着再用通货膨胀率计算实际收益率(Real Rate of Return),方法是(1+会计收益率)/(1+通货膨胀率)-1,我们将其命名为r_r。最后得到的df数据如下图所示。

最后就是数据可视化。

plt.style.use('ggplot') #选用ggplot主题
fig, ax = plt.subplots(4, 1, figsize=(12, 10), sharex=True) #共享x轴
df.adj_close.plot(ax=ax[0])
ax[0].set(title = 'Nvidia data analysis', ylabel = 'Stock price')
df.s_r.plot(ax=ax[1])
ax[1].set(ylabel = 'Simple returns')
df.inf_rate.plot(ax=ax[2])
ax[2].set(ylabel = 'Inflation rate')
df.r_r.plot(ax=ax[3])
ax[3].set(xlabel = 'Date', ylabel = 'Real Rate of Returns')

这里我们只要4列数据,即除了cpi之外的其他4列数据。将其置于4个子图中,绘图直接用dataframeplot方法即可,在这里我们选用了ggplot的绘图主题。得到的结果如下图所示。

从这里我们也可以看到用pandas分析美股数据非常方便,但是只掌握pandas的使用方法还是不够的,我们还要具备相关的金融基础知识,尤其是计量经济学的相关基础,因此在分析股票数据时最好还要有一定的经济学基础。所以在我们平时的业务工作当中,除了必要的编程技能以外,掌握相关的理论知识也是很重要的。

学习来源

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343

推荐阅读更多精彩内容

  • 第1章 准备工作第2章 Python语法基础,IPython和Jupyter第3章 Python的数据结构、函数和...
    SeanCheney阅读 58,322评论 10 90
  • pyspark.sql模块 模块上下文 Spark SQL和DataFrames的重要类: pyspark.sql...
    mpro阅读 9,446评论 0 13
  • 最近的一年来,关于“结构性牛市”、“A股漂亮50”的口号不绝于耳。我们不得不承认:在当今的信息爆炸的时代,即便是...
    saji阅读 1,256评论 0 0
  • 2021年6月3日的你,还好吗? 死了没?应该不会这么不幸吧。趁着大爷我今晚睡不着,唠嗑唠嗑?应该大概可能是白...
    MYF_max阅读 269评论 0 0
  • 很糟糕,心理简直乱得一塌糊涂。通过了宝洁网申,一面二面,最后轮到笔试环节。这离拿到Offer的距离已经相当近了。...
    甘泽欣阅读 329评论 0 0