数据结构与算法之美笔记——平衡二叉查找树

摘要:

平衡二叉查找树(Balance Binary Search Tree)」用以解决二叉查找树因不平衡情况而导致的执行效率下降问题,不过为了提高整体操作的效率,基本上使用非严格的平衡二叉查找树,代表是「红黑树(Red-Black Tree)」。

平衡才是美

前面关于二叉查找树的文章已经提到过,平衡情况下二叉查找树的时间复杂度才是 O(\log{n}),但按照之前二叉查找树的插入、删除操作听之任之,不加以干预,二叉查找树的平衡性迟早会被破坏,于是引入了平衡二叉查找树。

对平衡二叉查找树的定义是树中任意节点的左右子树高度之差不大于 1,这样可以确保某个子树不会高度过大,影响二叉查找树的平衡。节点可以通过存储左右子树高度差确定是否符合平衡的定义,当插入或者删除操作时更新相应节点的高度,而查找操作并不受到影响。

不平衡到平衡

上一小节已经告诉我们如何确定一棵树是否平衡,或者树中的某个节点是否保持平衡,但如果出现不平衡的情况我们需要如何将其转换为平衡状态?一般「左旋」「右旋」是解决此问题的方法,其实左旋应该称为以某个节点为中心向左旋转,右旋与之相对应,应该被称为以某个节点为中心向右旋转,在左旋和右旋的操作中一般会有两个关键的节点,一个为「root」节点,一个为「pivot」节点,此处的 root 并不是指树的根节点,可以是树中的任意节点,可以理解为以此节点为根节点,左旋和右旋的操作就是以 pivot 节点为中心节点进行左右旋转。

几种不平衡情况

虽然二叉查找树有多种不平衡的具体情况,但最终被抽象总结为四种情况,接下来我们一起分析一下。

左-左(L-L)

此情况下 root 节点的左子树高度大于右子树,且高度差大于 1,而 pivot 为 root 的左子节点,而导致不平衡的是此节点的左子树,此时为了保持平衡需要进行右旋操作,将 root 移至 pivot 右子节点,pivot 的右子节点移至 root 的左子节点。

为何这样旋转?因为将 pivot 右旋时 pivot 会顶替 root 节点位置,所以 root 节点需要重新放置,按照二叉查找树的规则,pivot 是 root 的左子节点,root 节点值大于 pivot 值,root 节点应该放置在 pivot 的右子节点。如果 pivot 本身存在右子节点,那右子节点的位置将被 root 节点顶替,也需要重新放置。作为 pivot 的右子节点数值肯定大于 pivot 节点,而此节点依然属于原 root 节点的左子树,数值小于 root 节点,所以此节点应该放置于 root 节点的 左子节点处。

右-右(R-R)

右-右情况正好与左-左情况相反,当然也使用相反的旋转——右旋,将 root 节点移至 pivot 节点的左子节点处,将 pivot 节点的原左子节点移至 root 节点的右子节点,当然原因与左-左情况的相似。除了这两种情况外还有另外两种情况,分别是「左-右(L-R)」「右-左(R-L)」,左-右需要先进行左旋再进行右旋,右-左要先进行右旋再进行左旋,具体情况可以根据下图分析。

L-R-01.png

[图片上传失败...(image-a0c404-1569162501263)]

AVL 树

AVL 树是平衡二叉查找树的代表,通过左右子树的高度差来判断是否平衡,如果出现不平衡情况,需要根据具体非平衡形态进行相应的左右旋操作,但平衡二叉查找树的节点需要存储该节点的高度,所以每个节点的父节点可以通过左右子节点的高度属性快速判断左右子树是否出现了不平衡。在平衡性的实现上我采用左子树高度减右子树高度的方式,相减结果等于 0 表示两个子树高度一致,当结果大于 1 时表示左子树更高,当结果小于 -1 时表示右子树更高,这样的结果更加有利于判断当前树状处于哪种不平衡形态下。

代码实现

public class AvlTree {
    private Node root;

    public Node insertNode(Node node, int num) {
        if (node == null) {
            Node leaf = new Node(num);
            if (root == null) {
                root = leaf;
            }
            return leaf;
        }

        if (num < node.data) {
            node.left = insertNode(node.left, num);
        } else if (num > node.data) {
            node.right = insertNode(node.right, num);
        } else {
            return node;
        }

        int balance = getBalance(node);

        if (balance > 1 && num < node.left.data) {
            rotateRight(node);
        } else if (balance < -1 && num > node.right.data) {
            rotateLeft(node);
        } else if (balance > 1 && num > node.left.data) {
            rotateLeft(node.left);
            rotateRight(node);
        }

        node.height = updateNodeHeight(node);

        return node;
    }

    private int getNodeHeight(Node node) {
        return node == null ? 0 : node.height;
    }

    public List<Node> sortNode() {
        List<Node> nodes = new ArrayList<>();
        getSortNodes(nodes, root);
        return nodes;
    }

    private void getSortNodes(List<Node> sortNodes, Node node) {
        if (node == null) {
            return;
        }
        if (node.left == null && node.right == null) {
            sortNodes.add(node);
            return;
        }

        getSortNodes(sortNodes, node.left);
        sortNodes.add(node);
        getSortNodes(sortNodes, node.right);
    }

    public int getBalance(Node node) {
        return getNodeHeight(node.left) - getNodeHeight(node.right);
    }

    public Node getRoot() {
        return root;
    }

    public int getHeight() {
        return root.height;
    }

    public void rotateRight(Node rRoot) {
        Node pivot = rRoot.left;
        Node pivotR = pivot.right;

        pivot.right = rRoot;
        rRoot.left = pivotR;

        updateRotateNodeState(rRoot, pivot);
    }

    private void updateRotateNodeState(Node rRoot, Node pivot) {
        rRoot.height = updateNodeHeight(rRoot);
        pivot.height = updateNodeHeight(pivot);

        if (rRoot == root) {
            root = pivot;
        }
    }

    private int updateNodeHeight(Node rRoot) {
        return 1 + Math.max(getNodeHeight(rRoot.left), getNodeHeight(rRoot.right));
    }

    public void rotateLeft(Node rRoot) {
        Node pivot = rRoot.right;
        Node pivotL = pivot.left;

        pivot.left = rRoot;
        rRoot.right = pivotL;

        updateRotateNodeState(rRoot, pivot);
    }

    public class Node {
        public final int data;
        private Node left;
        private Node right;
        private int height = 1;

        public Node(int data) {
            this.data = data;
        }
    }
}

AVL 树的实现代码中只是实现了插入节点的操作,删除节点与之类似,按照二叉树删除节点的的规则将节点删除后判断节点是否处于平衡状态,如果未处于平衡状态就根据非平衡形态进行相应的旋转操作。

非严格平衡二叉树

虽然 AVL 树利用节点的旋转保持了整个树的平衡,但是每次插入节点或者删除节点都需要进行相关节点的旋转操作,必然会使操作效率下降,为了在二叉树的平衡性与执行效率之间找到一个平衡点,就提出了非严格定义的平衡二叉树,这样的二叉树不需要遵守任意节点的左右子树高度差不大于 1 的规定,而只要保持高度与 \log_2{n} 不会相差过大即可。

说理论过于抽象,我们举个实际的例子,比如非严格平衡二叉查找树的代表——「红黑树(Red-Black Tree/R-B Tree)」,红黑树也是二叉树,不同的是它的节点会是红色或者黑色,一棵红黑树需要满足以下几个条件

  • 根节点必须为黑色节点
  • 叶子节点都是黑色的空节点(NIL)
  • 两个相邻节点不能同时为红色节点,也就是说红色节点都是被黑色节点隔开的
  • 从任意节点出发,到达其可达的叶子节点路径上的黑色节点数量相同

第 1,3,4 点都比较容易理解,第 2 条保证叶子节点都为黑色空节点是为了简化红黑树的实现,现在的分析我们可以暂时不关心第 2 个定义,按照规则我们可以画一棵红黑树。

image

那红黑树的平均高度是多少?我们可以先把红色节点移除,使黑色节点形成四叉树,将四叉树节点移动转换为完全二叉树时可以看出,四叉树高度是低于相同节点数量下的完全二叉树的,也就是只由黑色节点组成的四叉树高度是低于 \log_2{n} 的,因为相邻红色节点需要被黑色节点隔开,加入红色后的红黑树高度是低于 2\log_2{n} 的,其实也是相对平衡的,并且在保持平衡的情况下使插入和删除操作都保持了较高的执行效率,如果红黑树碰到破坏平衡的情况,也就是破坏红黑树的第 3,4 条定义时可以按照红黑树的对应操作步骤使用左右旋使其重新符合定义。

image

[图片上传失败...(image-d39c98-1569162501263)]

通过红黑树我们可以看出其实平衡的定义可以比较宽泛,我们希望解决的二叉查找树平衡性问题其实是防止其退化为链表,也就是左右子树的高度差距极大,而保持平衡其实是在保持二叉查找树的对称性,避免高度差距极大的左右子树情况,降低二叉查找树的整体高度,以此保证二叉查找树的执行效率。

总结

由于平衡性问题会极大影响二叉查找树的执行效率,业界以左右子树高度差不大于 1 作为二叉查找树的界定标准,通过左旋或者右旋的方式来维护树的平衡,AVL 树是这种严格定义平衡二叉查找树代表,不过为了保持平衡导致操作的效率受到影响,为了平衡这种影响,业界采用更加广泛的平衡定义,同时也衍生出红黑树这样的非严格定义的平衡二叉查找树代表,在操作性能和平衡性之间找到了平衡点。


文章中如有问题欢迎留言指正
本章节代码已经上传GitHub,可点击跳转查看代码详情。
数据结构与算法之美笔记系列将会做为我对王争老师此专栏的学习笔记,如想了解更多王争老师专栏的详情请到极客时间自行搜索。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351

推荐阅读更多精彩内容