-
先看官网一张图
这就是dubbo的集群设计了,本章主要解析的就是图中的主要几个蓝色点,简单堆土做个说明:
Cluster对于dubbo集群整个管控,会有各种方案,比如快速失败、安全失败等
Directory在consumer章节中就已经接触过,主要维护的invoker的动态管理
Router一看名词就是路由相关了
-
LoadBalance讲的就是负载均衡
整体结合起来就是:consumer去远程调用一个具体的provider时,会通过集群中路由、负载均衡等策略选取最终一个具体的服务完成具体调用。
具体解析
一.Cluster
- 看下官网描述:
Cluster 将 Directory 中的多个 Invoker 伪装成一个 Invoker,对上层透明,伪装过程包含了容错逻辑,调用失败后,重试另一个
-
具体接口
/** * Cluster. (SPI, Singleton, ThreadSafe) * <p> * <a href="http://en.wikipedia.org/wiki/Computer_cluster">Cluster</a> * <a href="http://en.wikipedia.org/wiki/Fault-tolerant_system">Fault-Tolerant</a> * * Cluster 将 Directory 中的多个 Invoker 伪装成一个 Invoker,对上层透明,伪装过程包含了容错逻辑,调用失败后,重试另一个 * 应对出错情况采取的策略-9种实现 */ @SPI(FailoverCluster.NAME) public interface Cluster { /** * Merge the directory invokers to a virtual invoker. * * @param <T> * @param directory * @return cluster invoker * @throws RpcException */ @Adaptive <T> Invoker<T> join(Directory<T> directory) throws RpcException; }
很明显默认扩展是FailoverCluster,里面就一个很熟悉的方法,join,在consumer中已经出现过,那么跟踪一下;
MockClusterInvoker里面构造的是FailoverClusterInvoker,因此最终的invoker不断调用下传,继续:
这个代码无非就是将相关的consumer调用信息进行构造封装,返回,但真正发挥作用的地方就是那个返回的Invoker: MockClusterInvoker-->FailoverClusterInvoker,为什么?因为这一步直接决定最终发起远程调用时所使用的ClusterInvoker,也就是如下的doInvoker方法:
-
先看MockClusterInvoker
/** * 降级处理方案 * 原理就是改变注册在zookeeper上的节点信息.从而zookeeper通知重新生成invoker */ @Override public Result invoke(Invocation invocation) throws RpcException { Result result = null; String value = directory.getUrl().getMethodParameter(invocation.getMethodName(), Constants.MOCK_KEY, Boolean.FALSE.toString()).trim(); if (value.length() == 0 || value.equalsIgnoreCase("false")) { /** * 无降级: no mock * 这里的invoker是FailoverClusterInvoker */ result = this.invoker.invoke(invocation); } else if (value.startsWith("force")) { if (logger.isWarnEnabled()) { logger.info("force-mock: " + invocation.getMethodName() + " force-mock enabled , url : " + directory.getUrl()); } /** * 屏蔽: force:direct mock * mock=force:return+null * 表示消费方对方法的调用都直接返回null,不发起远程调用 * 可用于屏蔽不重要服务不可用的时候,对调用方的影响 */ // result = doMockInvoke(invocation, null); } else { /** * 容错: fail-mock * mock=fail:return+null * 表示消费方对该服务的方法调用失败后,再返回null,不抛异常 * 可用于对不重要服务不稳定的时候,忽略对调用方的影响 */ try { result = this.invoker.invoke(invocation); } catch (RpcException e) { if (e.isBiz()) { throw e; } else { if (logger.isWarnEnabled()) { logger.warn("fail-mock: " + invocation.getMethodName() + " fail-mock enabled , url : " + directory.getUrl(), e); } result = doMockInvoke(invocation, e); } } } return result; }
这里出现了consumer配置项中的一个重要配置:mock;代码逻辑很清楚,讲的是容器的容错与降级方案。
-
继续跟着看FailoverClusterInvoker
@Override @SuppressWarnings({"unchecked", "rawtypes"}) public Result doInvoke(Invocation invocation, final List<Invoker<T>> invokers, LoadBalance loadbalance) throws RpcException { // Invoker列表 List<Invoker<T>> copyinvokers = invokers; //确认下Invoker列表不为空 checkInvokers(copyinvokers, invocation); //重试次数 int len = getUrl().getMethodParameter(invocation.getMethodName(), Constants.RETRIES_KEY, Constants.DEFAULT_RETRIES) + 1; if (len <= 0) { len = 1; } // retry loop. RpcException le = null; // last exception. List<Invoker<T>> invoked = new ArrayList<Invoker<T>>(copyinvokers.size()); // invoked invokers. Set<String> providers = new HashSet<String>(len); for (int i = 0; i < len; i++) { //Reselect before retry to avoid a change of candidate `invokers`. //NOTE: if `invokers` changed, then `invoked` also lose accuracy. /** * 重试时,进行重新选择,避免重试时invoker列表已发生变化. * 注意:如果列表发生了变化,那么invoked判断会失效,因为invoker示例已经改变 */ if (i > 0) { checkWhetherDestroyed(); copyinvokers = list(invocation); // check again //重新检查一下 checkInvokers(copyinvokers, invocation); } /** 使用loadBalance选择一个Invoker返回 */ Invoker<T> invoker = select(loadbalance, invocation, copyinvokers, invoked); invoked.add(invoker); RpcContext.getContext().setInvokers((List) invoked); try { /** 使用选择的结果Invoker进行调用,返回结果 */ Result result = invoker.invoke(invocation); if (le != null && logger.isWarnEnabled()) { logger.warn("Although retry the method " + invocation.getMethodName() + " in the service " + getInterface().getName() + " was successful by the provider " + invoker.getUrl().getAddress() + ", but there have been failed providers " + providers + " (" + providers.size() + "/" + copyinvokers.size() + ") from the registry " + directory.getUrl().getAddress() + " on the consumer " + NetUtils.getLocalHost() + " using the dubbo version " + Version.getVersion() + ". Last error is: " + le.getMessage(), le); } return result; } catch (RpcException e) { if (e.isBiz()) { // biz exception. throw e; } le = e; } catch (Throwable e) { le = new RpcException(e.getMessage(), e); } finally { providers.add(invoker.getUrl().getAddress()); } } throw new RpcException(le != null ? le.getCode() : 0, "Failed to invoke the method " + invocation.getMethodName() + " in the service " + getInterface().getName() + ". Tried " + len + " times of the providers " + providers + " (" + providers.size() + "/" + copyinvokers.size() + ") from the registry " + directory.getUrl().getAddress() + " on the consumer " + NetUtils.getLocalHost() + " using the dubbo version " + Version.getVersion() + ". Last error is: " + (le != null ? le.getMessage() : ""), le != null && le.getCause() != null ? le.getCause() : le); }
看看发起远程调用的debug情况:
恩 确实进来了,既然FailoverCluster的策略是:失败自动切换,当出现失败,重试其它服务器,那么这个策略的体现逻辑就在这个doInvoker的for循环重试里
len的取值就是配置项retries,即重试次数,默认是3次;注意:重试时,进行重新选择,避免重试时invoker列表已发生变化.
至于当前invoker节点失败后重试的机制如何,就是select如何再次选择的问题了Invoker<T> invoker = select(loadbalance, invocation, copyinvokers, invoked);
次实现在父类AbstractClusterInvoker中:
/** * * 使用loadbalance选择invoker.</br> * a)先lb选择,如果在selected列表中 或者 不可用且做检验时,进入下一步(重选),否则直接返回</br> * b)重选验证规则:selected > available .保证重选出的结果尽量不在select中,并且是可用的 * * @param selected 已选过的invoker.注意:输入保证不重复 * * Select a invoker using loadbalance policy.</br> * a)Firstly, select an invoker using loadbalance. If this invoker is in previously selected list, or, * if this invoker is unavailable, then continue step b (reselect), otherwise return the first selected invoker</br> * b)Reslection, the validation rule for reselection: selected > available. This rule guarantees that * the selected invoker has the minimum chance to be one in the previously selected list, and also * guarantees this invoker is available. * * @param loadbalance load balance policy * @param invocation * @param invokers invoker candidates * @param selected exclude selected invokers or not * @return * @throws RpcException */ protected Invoker<T> select(LoadBalance loadbalance, Invocation invocation, List<Invoker<T>> invokers, List<Invoker<T>> selected) throws RpcException { if (invokers == null || invokers.isEmpty()) return null; String methodName = invocation == null ? "" : invocation.getMethodName(); // sticky,滞连接用于有状态服务,尽可能让客户端总是向同一提供者发起调用,除非该提供者挂了,再连另一台。 boolean sticky = invokers.get(0).getUrl().getMethodParameter(methodName, Constants.CLUSTER_STICKY_KEY, Constants.DEFAULT_CLUSTER_STICKY); { //ignore overloaded method if (stickyInvoker != null && !invokers.contains(stickyInvoker)) { stickyInvoker = null; } //ignore concurrency problem if (sticky && stickyInvoker != null && (selected == null || !selected.contains(stickyInvoker))) { if (availablecheck && stickyInvoker.isAvailable()) { return stickyInvoker; } } } Invoker<T> invoker = doSelect(loadbalance, invocation, invokers, selected); if (sticky) { stickyInvoker = invoker; } return invoker; }
继续看核心方法:doSelect
private Invoker<T> doSelect(LoadBalance loadbalance, Invocation invocation, List<Invoker<T>> invokers, List<Invoker<T>> selected) throws RpcException { if (invokers == null || invokers.isEmpty()) return null; // 只有一个invoker,直接返回,不需要处理 if (invokers.size() == 1) return invokers.get(0); if (loadbalance == null) { loadbalance = ExtensionLoader.getExtensionLoader(LoadBalance.class).getExtension(Constants.DEFAULT_LOADBALANCE); } /** 通过具体的负载均衡的算法得到一个invoker,最后调用 */ Invoker<T> invoker = loadbalance.select(invokers, getUrl(), invocation); //If the `invoker` is in the `selected` or invoker is unavailable && availablecheck is true, reselect. /** 如果 selected中包含(优先判断) 或者 不可用&&availablecheck=true 则重试. */ if ((selected != null && selected.contains(invoker)) || (!invoker.isAvailable() && getUrl() != null && availablecheck)) { try { /** * 重新选择 * 先从非selected的列表中选择,没有在从selected列表中选择 */ Invoker<T> rinvoker = reselect(loadbalance, invocation, invokers, selected, availablecheck); if (rinvoker != null) { invoker = rinvoker; } else { //Check the index of current selected invoker, if it's not the last one, choose the one at index+1. /** 看下第一次选的位置,如果不是最后,选+1位置. */ int index = invokers.indexOf(invoker); try { //Avoid collision //最后在避免碰撞 invoker = index < invokers.size() - 1 ? invokers.get(index + 1) : invokers.get(0); } catch (Exception e) { logger.warn(e.getMessage() + " may because invokers list dynamic change, ignore.", e); } } } catch (Throwable t) { logger.error("cluster reselect fail reason is :" + t.getMessage() + " if can not solve, you can set cluster.availablecheck=false in url", t); } } return invoker; }
大致如下:
- 通过具体的负载均衡的算法得到一个invoker(后面详细说负债均衡)
- 如果 selected中包含(优先判断) 或者 不可用&&availablecheck=true 则重试
这里有个重要的细节:sticky配置
看代码就知道其作用:
滞连接用于有状态服务,尽可能让客户端总是向同一提供者发起调用,除非该提供者挂了,再连另一台。
FailoverCluster失败重试策略就差不多讲完了,大概回顾下:
选择Cluster
决定ClusterInvoker
-
执行doInvoker时实现具体策略
这里不是很难,下面各种策略几乎类似方式处理,就简单根据官网介绍下其实现的效果:
- FailfastCluster
快速失败,只发起一次调用,失败立即报错。通常用于非幂等性的写操作,比如新增记录。
public class FailfastClusterInvoker<T> extends AbstractClusterInvoker<T> {
public FailfastClusterInvoker(Directory<T> directory) {
super(directory);
}
@Override
public Result doInvoke(Invocation invocation, List<Invoker<T>> invokers, LoadBalance loadbalance) throws RpcException {
checkInvokers(invokers, invocation);
Invoker<T> invoker = select(loadbalance, invocation, invokers, null);
try {
return invoker.invoke(invocation);
} catch (Throwable e) {
if (e instanceof RpcException && ((RpcException) e).isBiz()) { // biz exception.
throw (RpcException) e;
}
throw new RpcException(e instanceof RpcException ? ((RpcException) e).getCode() : 0, "Failfast invoke providers " + invoker.getUrl() + " " + loadbalance.getClass().getSimpleName() + " select from all providers " + invokers + " for service " + getInterface().getName() + " method " + invocation.getMethodName() + " on consumer " + NetUtils.getLocalHost() + " use dubbo version " + Version.getVersion() + ", but no luck to perform the invocation. Last error is: " + e.getMessage(), e.getCause() != null ? e.getCause() : e);
}
}
}
代码逻辑一目俩然
- FailsafeCluster
失败安全,出现异常时,直接忽略。通常用于写入审计日志等操作。
public class FailsafeClusterInvoker<T> extends AbstractClusterInvoker<T> {
private static final Logger logger = LoggerFactory.getLogger(FailsafeClusterInvoker.class);
public FailsafeClusterInvoker(Directory<T> directory) {
super(directory);
}
@Override
public Result doInvoke(Invocation invocation, List<Invoker<T>> invokers, LoadBalance loadbalance) throws RpcException {
try {
checkInvokers(invokers, invocation);
Invoker<T> invoker = select(loadbalance, invocation, invokers, null);
return invoker.invoke(invocation);
} catch (Throwable e) {
logger.error("Failsafe ignore exception: " + e.getMessage(), e);
return new RpcResult(); // ignore
}
}
}
- FailbackCluster
失败自动恢复,后台记录失败请求,定时重发。通常用于消息通知操作。
public class FailbackClusterInvoker<T> extends AbstractClusterInvoker<T> {
private static final Logger logger = LoggerFactory.getLogger(FailbackClusterInvoker.class);
private static final long RETRY_FAILED_PERIOD = 5 * 1000;
/**
* Use {@link NamedInternalThreadFactory} to produce {@link com.alibaba.dubbo.common.threadlocal.InternalThread}
* which with the use of {@link com.alibaba.dubbo.common.threadlocal.InternalThreadLocal} in {@link RpcContext}.
*/
private final ScheduledExecutorService scheduledExecutorService = Executors.newScheduledThreadPool(2,
new NamedInternalThreadFactory("failback-cluster-timer", true));
private final ConcurrentMap<Invocation, AbstractClusterInvoker<?>> failed = new ConcurrentHashMap<Invocation, AbstractClusterInvoker<?>>();
private volatile ScheduledFuture<?> retryFuture;
public FailbackClusterInvoker(Directory<T> directory) {
super(directory);
}
private void addFailed(Invocation invocation, AbstractClusterInvoker<?> router) {
if (retryFuture == null) {
synchronized (this) {
if (retryFuture == null) {
retryFuture = scheduledExecutorService.scheduleWithFixedDelay(new Runnable() {
@Override
public void run() {
// collect retry statistics
try {
retryFailed();
} catch (Throwable t) { // Defensive fault tolerance
logger.error("Unexpected error occur at collect statistic", t);
}
}
}, RETRY_FAILED_PERIOD, RETRY_FAILED_PERIOD, TimeUnit.MILLISECONDS);
}
}
}
failed.put(invocation, router);
}
void retryFailed() {
if (failed.size() == 0) {
return;
}
for (Map.Entry<Invocation, AbstractClusterInvoker<?>> entry : new HashMap<Invocation, AbstractClusterInvoker<?>>(failed).entrySet()) {
Invocation invocation = entry.getKey();
Invoker<?> invoker = entry.getValue();
try {
invoker.invoke(invocation);
failed.remove(invocation);
} catch (Throwable e) {
logger.error("Failed retry to invoke method " + invocation.getMethodName() + ", waiting again.", e);
}
}
}
@Override
protected Result doInvoke(Invocation invocation, List<Invoker<T>> invokers, LoadBalance loadbalance) throws RpcException {
try {
checkInvokers(invokers, invocation);
Invoker<T> invoker = select(loadbalance, invocation, invokers, null);
return invoker.invoke(invocation);
} catch (Throwable e) {
logger.error("Failback to invoke method " + invocation.getMethodName() + ", wait for retry in background. Ignored exception: " + e.getMessage() + ", ", e);
addFailed(invocation, this);
return new RpcResult(); // ignore
}
}
}
- ForkingCluster
并行调用多个服务器,只要一个成功即返回。通常用于实时性要求较高的读操作,但需要浪费更多服务资源。可通过 forks="2" 来设置最大并行数。
public class ForkingClusterInvoker<T> extends AbstractClusterInvoker<T> {
/**
* Use {@link NamedInternalThreadFactory} to produce {@link com.alibaba.dubbo.common.threadlocal.InternalThread}
* which with the use of {@link com.alibaba.dubbo.common.threadlocal.InternalThreadLocal} in {@link RpcContext}.
*/
private final ExecutorService executor = Executors.newCachedThreadPool(new NamedInternalThreadFactory("forking-cluster-timer", true));
public ForkingClusterInvoker(Directory<T> directory) {
super(directory);
}
@Override
@SuppressWarnings({"unchecked", "rawtypes"})
public Result doInvoke(final Invocation invocation, List<Invoker<T>> invokers, LoadBalance loadbalance) throws RpcException {
checkInvokers(invokers, invocation);
final List<Invoker<T>> selected;
final int forks = getUrl().getParameter(Constants.FORKS_KEY, Constants.DEFAULT_FORKS);
final int timeout = getUrl().getParameter(Constants.TIMEOUT_KEY, Constants.DEFAULT_TIMEOUT);
if (forks <= 0 || forks >= invokers.size()) {
selected = invokers;
} else {
selected = new ArrayList<Invoker<T>>();
for (int i = 0; i < forks; i++) {
// TODO. Add some comment here, refer chinese version for more details.
Invoker<T> invoker = select(loadbalance, invocation, invokers, selected);
if (!selected.contains(invoker)) {//Avoid add the same invoker several times.
selected.add(invoker);
}
}
}
RpcContext.getContext().setInvokers((List) selected);
final AtomicInteger count = new AtomicInteger();
final BlockingQueue<Object> ref = new LinkedBlockingQueue<Object>();
for (final Invoker<T> invoker : selected) {
executor.execute(new Runnable() {
@Override
public void run() {
try {
Result result = invoker.invoke(invocation);
ref.offer(result);
} catch (Throwable e) {
int value = count.incrementAndGet();
if (value >= selected.size()) {
ref.offer(e);
}
}
}
});
}
try {
Object ret = ref.poll(timeout, TimeUnit.MILLISECONDS);
if (ret instanceof Throwable) {
Throwable e = (Throwable) ret;
throw new RpcException(e instanceof RpcException ? ((RpcException) e).getCode() : 0, "Failed to forking invoke provider " + selected + ", but no luck to perform the invocation. Last error is: " + e.getMessage(), e.getCause() != null ? e.getCause() : e);
}
return (Result) ret;
} catch (InterruptedException e) {
throw new RpcException("Failed to forking invoke provider " + selected + ", but no luck to perform the invocation. Last error is: " + e.getMessage(), e);
}
}
}
- BroadcastCluster
广播调用所有提供者,逐个调用,任意一台报错则报错。通常用于通知所有提供者更新缓存或日志等本地资源信息。
public class BroadcastClusterInvoker<T> extends AbstractClusterInvoker<T> {
private static final Logger logger = LoggerFactory.getLogger(BroadcastClusterInvoker.class);
public BroadcastClusterInvoker(Directory<T> directory) {
super(directory);
}
@Override
@SuppressWarnings({"unchecked", "rawtypes"})
public Result doInvoke(final Invocation invocation, List<Invoker<T>> invokers, LoadBalance loadbalance) throws RpcException {
checkInvokers(invokers, invocation);
RpcContext.getContext().setInvokers((List) invokers);
RpcException exception = null;
Result result = null;
for (Invoker<T> invoker : invokers) {
try {
result = invoker.invoke(invocation);
} catch (RpcException e) {
exception = e;
logger.warn(e.getMessage(), e);
} catch (Throwable e) {
exception = new RpcException(e.getMessage(), e);
logger.warn(e.getMessage(), e);
}
}
if (exception != null) {
throw exception;
}
return result;
}
}
2.LoadBalance
- 看下主接口
/**
* 负载均衡-四种负载均衡策略
* LoadBalance. (SPI, Singleton, ThreadSafe)
* <p>
* <a href="http://en.wikipedia.org/wiki/Load_balancing_(computing)">Load-Balancing</a>
*
* @see com.alibaba.dubbo.rpc.cluster.Cluster#join(Directory)
*/
@SPI(RandomLoadBalance.NAME)
public interface LoadBalance {
/**
* select one invoker in list.
*
* @param invokers invokers.
* @param url refer url
* @param invocation invocation.
* @return selected invoker.
*/
@Adaptive("loadbalance")
<T> Invoker<T> select(List<Invoker<T>> invokers, URL url, Invocation invocation) throws RpcException;
}
默认取的是RandomLoadBalance,那我们就以消费流程去详细解析下这个负债均衡策略。
-
RandomLoadBalance
既然是负债均衡,那就是发起远程调用时选择provider服务时发挥作用,那我们从默认的FailoverClusterInvoker.doInvoke进入:
出现了loadbalance,那就继续跟踪
因为我本地就启了一个provider,因此就无需走负债均衡了,直接返回,但这里如果provider大于1的话,看上面画出的重点:
先找到AbstractLoadBalance的select方法:
@Override
public <T> Invoker<T> select(List<Invoker<T>> invokers, URL url, Invocation invocation) {
if (invokers == null || invokers.isEmpty()) return null;
if (invokers.size() == 1) return invokers.get(0);
// 进行选择,具体的子类实现,我们这里是RandomLoadBalance
return doSelect(invokers, url, invocation);
}
又是钩子,具体就顺其到子类了:
/**
* random load balance.
* 默认的策略
*
* 随机,按权重设置随机概率。
* 在一个截面上碰撞的概率高,但调用量越大分布越均匀,而且按概率使用权重后也比较均匀,有利于动态调整提供者权重。
*
* 1.获取invokers的个数,并遍历累加权重
* 2.若不为第0个,则将当前权重与上一个进行比较,只要有一个不等则认为不等,即:sameWeight=false
* 3.若总权重>0 且 sameWeight=false 按权重获取随机数,根据随机数合权重相减确定调用节点
* 4.sameWeight=true,则均等随机调用
*
* eg:假设有四个集群节点A,B,C,D,对应的权重分别是1,2,3,4,那么请求到A节点的概率就为1/(1+2+3+4) = 10%.B,C,D节点依次类推为20%,30%,40%.
*/
public class RandomLoadBalance extends AbstractLoadBalance {
public static final String NAME = "random";
private final Random random = new Random();
@Override
protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
int length = invokers.size(); // Number of invokers 总个数
int totalWeight = 0; // The sum of weights 总权重
boolean sameWeight = true; // Every invoker has the same weight? 权重是否都一样
for (int i = 0; i < length; i++) {
int weight = getWeight(invokers.get(i), invocation);
totalWeight += weight; // Sum 累计总权重
if (sameWeight && i > 0 && weight != getWeight(invokers.get(i - 1), invocation)) {
sameWeight = false; // 计算所有权重是否都一样
}
}
// eg: 总权重为10(1+2+3+4),那么怎么做到按权重随机呢?根据10随机出一个整数,假如为随机出来的是2.然后依次和权重相减,比如2(随机数)-1(A的权重) = 1,然后1(上一步计算的结果)-2(B的权重) = -1,此时-1 < 0,那么则调用B,其他的以此类推
if (totalWeight > 0 && !sameWeight) {
// 如果权重不相同且权重大于0.则按总权重数随机
// If (not every invoker has the same weight & at least one invoker's weight>0), select randomly based on totalWeight.
int offset = random.nextInt(totalWeight);
// 确定随机值落在那个片段上
// Return a invoker based on the random value.
for (int i = 0; i < length; i++) {
offset -= getWeight(invokers.get(i), invocation);
if (offset < 0) {
return invokers.get(i);
}
}
}
// 如果权重相同或权重为0则均等随机
// If all invokers have the same weight value or totalWeight=0, return evenly.
return invokers.get(random.nextInt(length));
}
}
当前策略的算法在注释中很清楚了,这里不在细说。其他三种负债均衡其实处理方式大致相同,简单列一下:
- RoundRobinLoadBalance
轮循,按公约后的权重设置轮循比率。
@Override
protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName();
int length = invokers.size(); // Number of invokers invokers的个数
int maxWeight = 0; // The maximum weight // 最大权重
int minWeight = Integer.MAX_VALUE; // The minimum weight 最小权重
final LinkedHashMap<Invoker<T>, IntegerWrapper> invokerToWeightMap = new LinkedHashMap<Invoker<T>, IntegerWrapper>();
int weightSum = 0;
for (int i = 0; i < length; i++) {
int weight = getWeight(invokers.get(i), invocation);
maxWeight = Math.max(maxWeight, weight); // Choose the maximum weight 累计最大权重
minWeight = Math.min(minWeight, weight); // Choose the minimum weight 累计最小权重
if (weight > 0) {
invokerToWeightMap.put(invokers.get(i), new IntegerWrapper(weight));
weightSum += weight;
}
}
AtomicPositiveInteger sequence = sequences.get(key);
if (sequence == null) {
sequences.putIfAbsent(key, new AtomicPositiveInteger());
sequence = sequences.get(key);
}
int currentSequence = sequence.getAndIncrement();
if (maxWeight > 0 && minWeight < maxWeight) { // 如果权重不一样
int mod = currentSequence % weightSum;
for (int i = 0; i < maxWeight; i++) {
for (Map.Entry<Invoker<T>, IntegerWrapper> each : invokerToWeightMap.entrySet()) {
final Invoker<T> k = each.getKey();
final IntegerWrapper v = each.getValue();
if (mod == 0 && v.getValue() > 0) {
return k;
}
if (v.getValue() > 0) {
v.decrement();
mod--;
}
}
}
}
// Round robin 取模循环
return invokers.get(currentSequence % length);
}
- LeastActiveLoadBalance
最少活跃调用数,相同活跃数的随机,活跃数指调用前后计数差。
使慢的提供者收到更少请求,因为越慢的提供者的调用前后计数差会越大
举个实际的例子:
A请求接受一个请求时计数+1,请求完再-1;B请求接受一个请求时,计数+1,请求完计数-1;按照这种逻辑,如果请求中的节点肯定比没有请求的计数低,因此找计数低的服务处理。场景就是:处理越慢的服务,计数越容易高,因此将后面请求分发给计数低的服务会更加友好。
@Override
protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
int length = invokers.size(); // Number of invokers ,invoker总数
int leastActive = -1; // The least active value of all invokers ,所有invoker的最小活跃数
int leastCount = 0; // The number of invokers having the same least active value (leastActive) 拥有最小活跃数的Invoker是的个数
int[] leastIndexs = new int[length]; // The index of invokers having the same least active value (leastActive) 拥有最小活跃数的Invoker的下标,也就是将最小活跃的invoker集中放入新数组,以便后续遍历
int totalWeight = 0; // The sum of weights 总权重
int firstWeight = 0; // Initial value, used for comparision 初始权重,用于计算是否相同
boolean sameWeight = true; // Every invoker has the same weight value? 是否所有invoker的权重都相同
for (int i = 0; i < length; i++) {
Invoker<T> invoker = invokers.get(i);
int active = RpcStatus.getStatus(invoker.getUrl(), invocation.getMethodName()).getActive(); // Active number 活跃数
int weight = invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.WEIGHT_KEY, Constants.DEFAULT_WEIGHT); // Weight
if (leastActive == -1 || active < leastActive) { // Restart, when find a invoker having smaller least active value. 如果发现更小的活跃数则重新开始
leastActive = active; // Record the current least active value 记录下最小的活跃数
leastCount = 1; // Reset leastCount, count again based on current leastCount 重新统计最小活跃数的个数
leastIndexs[0] = i; // Reset 重置小标
totalWeight = weight; // Reset
firstWeight = weight; // Record the weight the first invoker 重置第一个权重
sameWeight = true; // Reset, every invoker has the same weight value? 重置是否权重相同标识
} else if (active == leastActive) { // If current invoker's active value equals with leaseActive, then accumulating. 累计相同的最小活跃数
leastIndexs[leastCount++] = i; // Record index number of this invoker 累计相同的最小活跃invoker的小标
totalWeight += weight; // Add this invoker's weight to totalWeight. 累加总权重
// If every invoker has the same weight? 是否所有权重一样
if (sameWeight && i > 0
&& weight != firstWeight) {
sameWeight = false;
}
}
}
// assert(leastCount > 0)
if (leastCount == 1) {
// 如果只有一个最小则直接返回
// If we got exactly one invoker having the least active value, return this invoker directly.
return invokers.get(leastIndexs[0]);
}
if (!sameWeight && totalWeight > 0) {
// 如果权重不相同且总权重大于0,则按总权重随机
// If (not every invoker has the same weight & at least one invoker's weight>0), select randomly based on totalWeight.
int offsetWeight = random.nextInt(totalWeight);
// 按随机数去值
// Return a invoker based on the random value.
for (int i = 0; i < leastCount; i++) {
int leastIndex = leastIndexs[i];
offsetWeight -= getWeight(invokers.get(leastIndex), invocation);
if (offsetWeight <= 0)
return invokers.get(leastIndex);
}
}
// 如果权重相同或总权重为0,则均等随机
// If all invokers have the same weight value or totalWeight=0, return evenly.
return invokers.get(leastIndexs[random.nextInt(leastCount)]);
}
- ConsistentHashLoadBalance
一致性 Hash,相同参数的请求总是发到同一提供者。当某一台提供者挂时,原本发往该提供者的请求,基于虚拟节点,平摊到其它提供者,不会引起剧烈变动。
protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName();
int identityHashCode = System.identityHashCode(invokers);
ConsistentHashSelector<T> selector = (ConsistentHashSelector<T>) selectors.get(key);
if (selector == null || selector.identityHashCode != identityHashCode) {
selectors.put(key, new ConsistentHashSelector<T>(invokers, invocation.getMethodName(), identityHashCode));
selector = (ConsistentHashSelector<T>) selectors.get(key);
}
return selector.select(invocation);
}
具体相关算法:
http://en.wikipedia.org/wiki/Consistent_hashing
3.Router
- 请求被路由到哪个服务器,靠的就是路由啦,先看下主接口:
/**
* Router. (SPI, Prototype, ThreadSafe)
* <p>
* <a href="http://en.wikipedia.org/wiki/Routing">Routing</a>
*
* @see com.alibaba.dubbo.rpc.cluster.Cluster#join(Directory)
* @see com.alibaba.dubbo.rpc.cluster.Directory#list(Invocation)
*/
public interface Router extends Comparable<Router> {
/**
* get the router url.
*
* @return url
*/
URL getUrl();
/**
* route.
*
* @param invokers
* @param url refer url
* @param invocation
* @return routed invokers
* @throws RpcException
*/
<T> List<Invoker<T>> route(List<Invoker<T>> invokers, URL url, Invocation invocation) throws RpcException;
}
核心方法已经出现了。我们还是按照原有思路debug一下:
OK ,路由核心出现了,上面方法做了两件事:
- 1.RegistryDirectory doList(invocation)将所有可用的invokers根据参数条件筛选出来;
- 2.根据路由规则,将directory中筛选出来的invokers进行过滤,比如MockInvokersSelector将所有mock invokers过滤掉。
过滤出来的invokers再返回即完成路由操作。路由执行大体流程就是如此,接下来列一下几个路由策略:
-
ScriptRouter
脚本路由规则 支持 JDK 脚本引擎的所有脚本,比如:javascript, jruby, groovy 等,通过 type=javascript 参数设置脚本类型,缺省为 javascript。
@Override @SuppressWarnings("unchecked") public <T> List<Invoker<T>> route(List<Invoker<T>> invokers, URL url, Invocation invocation) throws RpcException { try { List<Invoker<T>> invokersCopy = new ArrayList<Invoker<T>>(invokers); Compilable compilable = (Compilable) engine; Bindings bindings = engine.createBindings(); bindings.put("invokers", invokersCopy); bindings.put("invocation", invocation); bindings.put("context", RpcContext.getContext()); CompiledScript function = compilable.compile(rule); Object obj = function.eval(bindings); if (obj instanceof Invoker[]) { invokersCopy = Arrays.asList((Invoker<T>[]) obj); } else if (obj instanceof Object[]) { invokersCopy = new ArrayList<Invoker<T>>(); for (Object inv : (Object[]) obj) { invokersCopy.add((Invoker<T>) inv); } } else { invokersCopy = (List<Invoker<T>>) obj; } return invokersCopy; } catch (ScriptException e) { //fail then ignore rule .invokers. logger.error("route error , rule has been ignored. rule: " + rule + ", method:" + invocation.getMethodName() + ", url: " + RpcContext.getContext().getUrl(), e); return invokers; } }
ConditionRouter
条件路由: 根据dubbo管理控制台配置的路由规则来过滤相关的invoker,这里会实时触发RegistryDirectory类的notify方法,通知本地重建invokers
```
@Override
public <T> List<Invoker<T>> route(List<Invoker<T>> invokers, URL url, Invocation invocation) throws RpcException {
if (invokers == null || invokers.isEmpty()) {
return invokers;
}
try {
if (!matchWhen(url, invocation)) {
return invokers;
}
List<Invoker<T>> result = new ArrayList<Invoker<T>>();
if (thenCondition == null) {
logger.warn("The current consumer in the service blacklist. consumer: " + NetUtils.getLocalHost() + ", service: " + url.getServiceKey());
return result;
}
for (Invoker<T> invoker : invokers) {
if (matchThen(invoker.getUrl(), url)) {
result.add(invoker);
}
}
if (!result.isEmpty()) {
return result;
} else if (force) {
logger.warn("The route result is empty and force execute. consumer: " + NetUtils.getLocalHost() + ", service: " + url.getServiceKey() + ", router: " + url.getParameterAndDecoded(Constants.RULE_KEY));
return result;
}
} catch (Throwable t) {
logger.error("Failed to execute condition router rule: " + getUrl() + ", invokers: " + invokers + ", cause: " + t.getMessage(), t);
}
return invokers;
}
```
OK 路由基本就分析到这里;
4.Directory
-
这个在consumer中已经分析过了,简单看看官网描述:
Directory 代表多个 Invoker,可以把它看成 List<Invoker> ,但与 List 不同的是,它的值可能是动态变化的,比如注册中心推送变更
/**
* Directory. (SPI, Prototype, ThreadSafe)
* <p>
* <a href="http://en.wikipedia.org/wiki/Directory_service">Directory Service</a>
*
* Directory 代表多个 Invoker,可以把它看成 List<Invoker> ,但与 List 不同的是,它的值可能是动态变化的,比如注册中心推送变更
*
* @see com.alibaba.dubbo.rpc.cluster.Cluster#join(Directory)
*/
public interface Directory<T> extends Node {
/**
* get service type.
*
* @return service type.
*/
Class<T> getInterface();
/**
* list invokers.
*
* @return invokers
*/
List<Invoker<T>> list(Invocation invocation) throws RpcException;
}
而此处list方法的核心逻辑也是在分析Route中就已经见过了,不在分析;
Directory能够动态根据注册中心维护Invokers列表,是因为相关Listener在被notify之后会触发methodInvokerMap和urlInvokerMap等缓存的相关变动;最后在list方法中也就实时取出了最新的invokers;看下之前的流程就清楚了;
- StaticDirectory
构造方法传入invokers,因此这个Directory的invokers是不会动态变化的,使用场景不多;
public StaticDirectory(List<Invoker<T>> invokers) {
this(null, invokers, null);
}
public StaticDirectory(List<Invoker<T>> invokers, List<Router> routers) {
this(null, invokers, routers);
}
public StaticDirectory(URL url, List<Invoker<T>> invokers) {
this(url, invokers, null);
}
public StaticDirectory(URL url, List<Invoker<T>> invokers, List<Router> routers) {
super(url == null && invokers != null && !invokers.isEmpty() ? invokers.get(0).getUrl() : url, routers);
if (invokers == null || invokers.isEmpty())
throw new IllegalArgumentException("invokers == null");
this.invokers = invokers;
}
- RegistryDirectory
根据注册中心的推送变更,动态维护invokers列表;
整个集群大致模块就到这里。