小案例(八):商户信息整理(python)

原文链接:小案例(八):商户信息整理(python)

微信公众号:机器学习养成记 


1、需求目的

本次小案例中,我们的样例数据是上海几家商户及其地址信息,其中地址信息包括市、区、具体门牌号,但所有信息均未进行拆分,因此无法对商户名称及地址信息进行更好的应用整理。原始数据如下👇

我们希望通过一系列整理,可以把数据拆分成商户名称、城市、区、详细地址的格式,并且将商户名称后面括号中的内容去掉,目标结果如下👇

2、 知识点

rfind():返回字符串最后一次出现的位置

根据官方给出的例子,我们要找到“is”最后出现的位置,“is”最后出现的地方前面分别是“t”,“h”,“i”,“s”,“ ”五个字符,最后出现的“is”位于第六个字符处,所以返回结果为5(python中第一个位置从0开始)。

str ="this is really a string example....wow!!!";

substr ="is";

print str.rfind(substr);

#输出结果为:5

正则表达式

python中的re模块可以通过正则表达式实现一系列的字符串匹配功能,其中re.sub()用于替换字符串中的匹配项,'\D'代表除数字以外的任意字符,官方示例中,展示了如何将所有的非数字字符替换为空(即去除所有非数字字符),在本次介绍的案例中我们也用此方法将商户名称后面()中的内容剔除掉。

import re

phone ="2004-959-559 

# 这是一个电话号码"

# 移除非数字的内容

num = re.sub(r'\D',"", phone)

print(num)

#输出结果为:2004959559

3、python代码实现

下面是可以满足需求实现的python代码,主要实现逻辑是:用rfind()逐行进行切分,并通过正则表达式剔除商户名称后面()中内容,生成4个维度的列表;然后把列表整理成字典形式;最后转化为dataframe进行返回。

def organizedData(data):

# name : 商户名称

# city : 城市

# community : 区

# detail : 详细地址       

    name = []   

    city = []   

    community = []   

    detail = []

    for line in range(0,data.shape[0]):

        r = data.iloc[line,0].rfind('上海市')

        d = data.iloc[line,0].rfind('区')

        #将店名后面括号中的内容删掉

        name.append(re.sub(r'\([\u4e00-\u9fa5a-zA-Z0-9]*\)','',data.iloc[line,0][0:r]))

        city.append('上海市')

        community.append(data.iloc[line,0][r+3:d+1])

        detail.append(data.iloc[line,0][d+2:])   

        #将列表转换为字典,然后生成数据框

        c = {"name": name,"city": city,"community":community,"detail":detail}   

        result = pd.DataFrame(c)

        return result

公众号后台回复“整理”获得完整代码


原文链接:小案例(八):商户信息整理(python)

微信公众号:机器学习养成记 

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容