ML8 - Text Mining Intro

1. Introduction

The main idea behind text mining is “turn text into numbers”.

1.1 Areas

  1. Search and information retrieval (IR): Storage and retrieval of text documents, including search engines and keyword search.
  2. Document clustering: Grouping and categorizing terms, snippets, paragraphs, or documents, using data mining clustering methods.
  3. Document classification: Grouping and categorizing snippets, paragraphs, or documents, using data mining classification methods, based on models trained on labeled examples.
  4. Web mining: Data and text mining on the Internet, with a specific focus on the scale and interconnectedness of the web.
  5. Information extraction (IE): Identification and extraction of relevant facts and relationships from unstructured text; the process of making structured data from unstructured and semi-structured text.
  6. Natural language processing (NLP): Low-level language processing and understanding tasks (e.g., tagging part of speech); often used synonymously with computational linguistics.
  7. Concept extraction: Grouping of words and phrases into semantically similar groups.

1.2 Processes

  1. Planning
  • Sets the foundation for the analysis
  1. Preparing (data assemble) and data pre-processing
  • Gathering the relevant documents.
  • Information extraction (unearthing information of interest from these documents) including data reduction and preparation involving text pre-processing, and termdocument representation.
  1. Data exploration (discovering new associations among the extracted pieces of information)
  • Text analysis (building models) using supervised analysis methods (such as classification analysis and sentiment analysis) and unsupervised analysis methods (such as latent semantic analysis, cluster analysis and topic models).
  1. Reporting
  • Interpretation of the findings and their significance.
  • Two key elements: storytelling and visualization.


2. Concepts

  • Syntax: Specific grammar rules and language conventions govern how language is used, leading to statistical patterns appearing frequently in large amounts of text.
  • Semantics: Refers to the meaning of the individual words within the surrounding context.
  • The Generalized Vector-Space Model: The most popular structured representation of text is the vector-space model, which represents text as a vector where the elements of the vector indicate the occurrence of words within the text.
  • Bag-of-words
  • Homographs: Words that are spelt the same but have different
    meanings. Homographs do not typically have a large effect on the
    results of text mining algorithms.

3. Preprocessing

  1. Choose the scope of the text to be processed (documents, paragraphs, etc.).
  2. Tokenize: Break text into discrete words called tokens.
  3. Remove stopwords (“stopping”): Remove common words such as 'the'.
  4. Stem: Remove prefixes and suffixes to normalize words – e.g. run, running, and runs would all be stemmed to run.
  • Typically, the stemming process includes the identification and removal of prefixes, suffixes, and inappropriate pluralizations.
  • E.g., normalize walking, walks, walked, walker, and so on into walk.
  • Popular methods: Snowball Stemmer, Lemmatization
  1. Normalize spelling: Unify misspellings and other spelling variations into a single token.
  2. Detect sentence boundaries: Mark the ends of sentences.
  3. Normalize case: Convert the text to either all lower or all upper case.

4. Creating vectors

After text pre-processing has been completed, the individual word tokens must be transformed into a vector representation suitable for input into text mining algorithms.

This vector representation can take one of three different forms:

  1. a binary representation,
  2. an integer count, or
  3. a float-valued weighted vector.
    TF-IDF stands for “term frequencyinverse document frequency”.
    The assumption behind TF-IDF is that words with high term frequency should receive high weight unless they also have high document frequency.

5. Applications

    1. Extracting “meaning” from unstructured text.
      – This application involves the understanding of core themes
      and relevant messages in a corpus of text, without actually
      reading the documents.
      Common use cases:
      – Sentiment analysis
      – Trending themes in a stream of text
      – Summarizing text
    1. Automatic text categorization.
      – Automatically classifying text is an efficient way to organize
      text for downstream processing.
    1. Improving predictive accuracy in predictive modeling or unsupervised learning.
      – Combining unstructured text with structured numeric information in predictive modeling or unsupervised learning (clustering) is a powerful method to achieve better accuracy.
    1. Identifying specific or similar/relevant documents.
      – Efficiently extracting from a large corpus of text those documents that are relevant to a particular topic of interest or are similar to a target document (or documents) is a vitally necessary operation in information retrieval.
    1. Extracting specific information from the text (“entity extraction”).
      – Automatically extracting specific information from the text (such as names, geographical locations, and dates) is an efficient method for presenting highly focused information for downstream analytical processing or for direct use by decision makers.
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,658评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,482评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,213评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,395评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,487评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,523评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,525评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,300评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,753评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,048评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,223评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,905评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,541评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,168评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,417评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,094评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,088评论 2 352