【转】Hadoop学习之Pig

一、关于Pig:别以为猪不能干活

1.1 Pig的简介


Pig是一个基于Hadoop的大规模数据分析平台,它提供的SQL-LIKE语言叫Pig Latin,该语言的编译器会把类SQL的数据分析请求转换为一系列经过优化处理的MapReduce运算。Pig为复杂的海量数据并行计算提供了一个简单的操作和编程接口。

Compare:相比Java的MapReduce API,Pig为大型数据集的处理提供了更高层次的抽象,与MapReduce相比,Pig提供了更丰富的数据结构,一般都是多值和嵌套的数据结构。Pig还提供了一套更强大的数据变换操作,包括在MapReduce中被忽视的连接Join操作。

Pig包括两部分:

  • 用于描述数据流的语言,称为Pig Latin。
  • 用于执行Pig Latin程序的执行环境,当前有两个环境:单JVM中的本地执行环境和Hadoop集群上的分布式执行环境。
      
    Pig内部,每个操作或变换是对输入进行数据处理,然后产生输出结果,这些变换操作被转换成一系列MapReduce作业,Pig让程序员不需要知道这些转换具体是如何进行的,这样工程师可以将精力集中在数据上,而非执行的细节上。

1.2 Pig的特点

(1)专注于于大量数据集分析;
(2)运行在集群的计算架构上,Yahoo Pig 提供了多层抽象,简化并行计算让普通用户使用;这些抽象完成自动把用户请求queries翻译成有效的并行评估计划,然后在物理集群上执行这些计划;
(3)提供类似 SQL 的操作语法;
(4)开放源代码;

1.3 Pig与Hive的区别

对于开发人员,直接使用Java APIs可能是乏味或容易出错的,同时也限制了Java程序员在Hadoop上编程的运用灵活性。于是Hadoop提供了两个解决方案,使得Hadoop编程变得更加容易。

  • Pig是一种编程语言,它简化了Hadoop常见的工作任务。Pig可加载数据、表达转换数据以及存储最终结果。Pig内置的操作使得半结构化数据变得有意义(如日志文件)。同时Pig可扩展使用Java中添加的自定义数据类型并支持数据转换。

  • Hive在Hadoop中扮演数据仓库的角色。Hive添加数据的结构在HDFS,并允许使用类似于SQL语法进行数据查询。与Pig一样,Hive的核心功能是可扩展的。

Pig和Hive总是令人困惑的。Hive更适合于数据仓库的任务,Hive主要用于静态的结构以及需要经常分析的工作。Hive与SQL相似促使 其成为Hadoop与其他BI工具结合的理想交集。Pig赋予开发人员在大数据集领域更多的灵活性,并允许开发简洁的脚本用于转换数据流以便嵌入到较大的应用程序。Pig相比Hive相对轻量,它主要的优势是相比于直接使用Hadoop Java APIs可大幅削减代码量。正因为如此,Pig仍然是吸引大量的软件开发人员。

二、Pig的安装配置

2.1 准备工作

下载pig的压缩包,这里使用的是pig-0.11.1版本,已经上传至了百度网盘中

(1)通过FTP工具上传到虚拟机中,可以选择XFtp、CuteFTP等工具

(2)解压缩

tar -zvxf pig-0.11.1.tar.gz

(3)重命名

mv pig-0.11.1 pig

(4)修改/etc/profile,增加内容如下,最后重新生效配置文件source /etc/profile

 export PIG_HOME=/usr/local/pig
export PATH=.:$HADOOP_HOME/bin:$PIG_HOME/bin:$HBASE_HOME/bin:$ZOOKEEPER_HOME/bin:$JAVA_HOME/bin:$PATH

2.2 设置Pig与Hadoop关联

进入$PIG_HOME/conf中,编辑pig.properties文件,加入以下两行内容:

 fs.default.name=hdfs://hadoop-master:9000
mapred.job.tracker=hadoop-master:9001

三、Pig的使用实例

3.1 文件背景

结合本笔记第五篇《自定义类型处理手机上网日志》的手机上网日志为背景,我们要做的就是通过Pig Latin对该日志进行流量的统计。该日志的数据结构定义如下图所示:(该文件的下载地址为:http://pan.baidu.com/s/1dDzqHWX

PS:在使用Pig之前先将该文件上传至HDFS中,这里上传到了/testdir/input目录中

hadoop fs -put HTTP_20130313143750.dat /testdir/input

3.2 Load:把HDFS中的数据转换为Pig可以处理的模式

(1)首先通过输入Pig进入grunt,然后使用Load命令将原始文件转换为Pig可以处理的模式:

 grunt>A = LOAD '/testdir/input/HTTP_20130313143750.dat' AS (t0:long,msisdn:chararray, t2:chararray, t3:chararray, t4:chararray, t5:chararray, t6:long, t7:long, t8:long, t9:long, t10:chararray);

(2)通过Pig对指令的解析,帮我们转换成为了MapReduce任务:

(3)通过以下命令可以查看结果:

grunt>DUMP A;

3.3 FOREACH:把A中有用的字段抽取出来

(1)这里我们需要统计的只是手机号以及四个流量数据,因此我们通过遍历将A中的部分字段抽取出来存入B中:

grunt> B = FOREACH A GENERATE msisdn, t6, t7, t8, t9;

(2)通过以下命令可以查看结果:

grunt>DUMP B;

3.4 GROUP:分组数据

(1)有用信息抽取出来后,看到结果中一个手机号可能有多条记录,因此这里通过手机号进行分组:

grunt> C = GROUP B BY msisdn;

(2)通过以下命令可以查看结果:

grunt>DUMP C;

3.5 GENERATE:流量汇总

(1)在对手机号进行分组之后,我们可以看到某个手机号对应着多条流量记录数据,因此继续使用FOREACH遍历分组数据,然后对四个流量数据进行汇总,这里使用了聚合函数SUM():

grunt> D = FOREACH C GENERATE group, SUM(B.t6), SUM(B.t7), SUM(B.t8), SUM(B.t9);

(2)通过以下命令可以查看结果:

grunt>DUMP D;

3.6 STORE:将统计结果存储到HDFS中进行持久化

(1)在对流量统计完毕之后,结果仍然是在Pig中,这里就需要对其进行持久化操作,即将结果存储到HDFS中:

grunt> STORE D INTO '/testdir/output/wlan_result';

(2)通过HDFS Shell查看存储结果:

hadoop fs -text /testdir/output/wlan_result/part-r-*

转自http://www.cnblogs.com/edisonchou/

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容