Congruences

Basic symbols

Let Z_{n}  denotes all the integers model n, which can also be written as [n], for example:

Z_{2}=[-2,-1,0,1,2]Z_{5}=[-5,-4,-3,-2,-1,0,1,2,3,4,5]

while in the cryptography world, we hope each element in an integer set should have a inverse.

Unfortunately, not every Z_{n} satisfy, so we introduce a new notion Z_{n}^*.

Let Z_{n}^* denotes all the subset in Z_{n}, let \alpha \in Z_{n}^*, then \alpha should have a inverse integer \frac{1}{\alpha } which also belongs to Z_{n}^*, we list the elements of Z_{15}^*, and for each \alpha \in Z_{15}^*, we also have \frac{1}{\alpha } .

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容