Redis持久化方式的区别

1、混合持久化

    重启redis时,我们很少使用RDB来恢复内存状态,因为会丢失大量数据。我们通常使用AOF日志重放,但是重放AOF日志性能相对RDB来说要慢很多,这样在redis实例很大的情况下,启动需要花费很长的时间。redis-4.0为了解决这个问题,带来了一个新的持久化选项——混合持久化。将RDB文件的内容和增量的AOF日志文件存在一起。这里的AOF日志不再是全量的日志,而是自持久化开始到持久化结束的这段时间发生的增量AOF日志,通常这部分AOF日志很小。aof-use-rdb-preamble配置参数控制,yes则表示开启,no表示禁用。


2、各种持久化方式对比

2.1、 RDB的优缺点      

优点:

    1、当进行RDB持久化时,对redis服务处理读写请求的影响非常小,可以让redis保持高性能,因为redis主进程只需要fork一个子进程,让子进程执行磁盘IO操作来进行RDB持久化即可。生成一次RDB文件的过程就是把当前时刻内存中的数据一次性写入文件中,而AOF则需要先把当前内存中的小量数据转换为操作指令,然后把指令写到内存缓存中,然后再刷写入磁盘

    2、相对于AOF持久化机制来说,直接基于RDB数据文件来重启和恢复redis的数据会更加快速。AOF,存放的是指令日志,做数据恢复的时候,要回放和执行所有的指令日志,从而恢复内存中的所有数据。而RDB,就是一份数据文件,恢复的时候,直接加载到内存中即可。

缺点:

    1、如果想要在redis故障时,尽可能少的丢失数据,那么RDB没有AOF好。一般来说,RDB数据快照文件,都是每隔5分钟,或者更长时间生成一次,这个时候就得接受一旦redis进程宕机,那么会丢失最近5分钟的数据。这个问题,也是RDB最大的缺点,就是不适合做第一优先的恢复方案,如果你依赖RDB做第一优先恢复方案,会导致数据丢失的比较多。

    2、RDB每次在fork子进程来执行RDB快照数据文件生成的时候,如果数据文件特别大,可能会导致对客户端提供的服务暂停数毫秒,甚至数秒。所以一般不要让生成RDB文件的间隔太长,否则每次生成的RDB文件太大了,对redis本身的性能会有影响。


2.2、 AOF的优缺点

优点:

    1、AOF可以更好的保护数据不丢失,一般AOF会每隔1秒,通过一个后台线程执行一次fsync操作,最多丢失1秒钟的数据。

    2、AOF日志文件以append-only模式写入,所以没有任何磁盘寻址的开销,写入性能非常高,而且文件不容易破损,即使文件尾部破损,也很容易修复。

    3、AOF日志文件即使过大的时候,出现后台重写操作,也不会影响客户端的读写。因为在rewrite的时候,会对其中的指令进行压缩,会创建出一份需要恢复数据的最小日志出来。

缺点:

    1、对于同一份数据来说,AOF日志文件通常比RDB数据快照文件更大。

    2、AOF的写性能比RDB的写性能低,因为AOF一般会配置成每秒fsync一次日志文件,当然,每秒一次fsync,性能也还是很高的,只不过比起RDB来说性能低,如果要保证一条数据都不丢,也是可以的,AOF的fsync设置成每写入一条数据,fsync一次,但是这样,redis的性能会大大下降。

    3、基于AOF文件做恢复的速度不如基于RDB文件做恢复的速度。


2.3、 混合持久化的优缺点

优点:结合了RDB和AOF的优点,使得数据恢复的效率大幅提升

缺点:兼容性不好,redis-4.x新增,虽然最终的文件也是.aof格式的文件,但在4.0之前版本都不识别该aof文件,同时由于前部分是RDB格式,阅读性较差。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351