基因组测序数据从头拼接或组装算法的原理

基因组测序数据的拼接/组装 (图片来源:google)

每一个物种的参考基因组序列(reference genome)的产生都要先通过测序的方法,获得基因组的测序读段(reads),然后再进行从头拼接或组装(英文名称为do novo genome assembly),最后还原测序物种的各条染色体的序列,即ATGC四种碱基的排列顺序。

之所以要进行基因组拼接,是因为现在的测序技术还只能测较短的序列,无法直接获取一整条染色体的序列。如一代测序(Sanger测序)一般可测1kb左右的序列;二代测序(next-generation sequencing),一般可测50~500bp;三代测序虽然可测100kb甚至更长的序列,但现在三代测序技术还不是很成熟,还有较高的测序错误率。

基因组测序数据的从头组装过程,可简单描述为:reads---->contig---->scaffold---->chromosome,具体如下所示:


基因组序列从头组装示意图(图片来源:Guo et al. Genomics, 2017)。首先基因组测序产生reads,然后对reads进行组装产生长片段Contigs,再确定Contig的方向和顺序,组装产生更长的片段Scaffolds,最后再组装连接Scaffold得到完整的染色体序列。

首先,给大家依次介绍一下上图从头拼接中涉及到的两个概念:contig和scaffold。

Contig是由多个reads通过组装而形成的长片段。由于测序读段较短、基因组序列通常含有较多重复序列、而且还有测序错误等原因,除了简单的基因组序列外,大部分物种的基因组序列组装都会先产生很多contig,无法一次获得完整的染色体序列。

Scaffold为多条contig序列连接形成更长片段,这些contig方向和顺序已经确定,且contig间未知序列(一般用NNNN表示)的长度也获知。

Scaffold的获得一般主要通过双端测序(如paired-end sequecing或mate-pair sequencing)来确定contig的顺序和方向,以及contig之间的间隔距离,具体如下示意图所示。


由reads组装产生contig,再由contig连接形成scaffold的示意图 (图片来源:google)

基因组测序数据的从头组装的核心算法主要可以分为以下几大类:

1、基于贪心算法(greedy-extention);

2、基于Overlap-Layout-Consensus(OLC);

3、基于de Bruijn Graph;

4、以上两种或多种算法的组合;

5、其他类型。

具体如下图所示:


基因组从头组装算法分类及代表性软件发表的时间(图片来源:Zhanget al. PlosOne, 2011)

其中最经典的两类为:

1)Overlap-Layout-Consensus(OLC)算法,基于OLC算法的组装软件主要是针对长测序读段(如Sanger测序、454测序等)设计的;

2)de Bruijn Graph算法,基于de Bruijn Graph的组装软件则主要是针对二代测序产生的短读段数据设计。

具体如下所示:

1)Overlap-Layout-Consensus(OLC)算法


Overlap-Layout-Consensus(OLC)算法的示意图(图片来源:Ayling et al. Briefings in Bioinformatics, 2019)

2)de Bruijn Graph算法


de Bruijn Graph算法的示意图(图片来源:Ayling et al. Briefings in Bioinformatics, 2019)

现在主流的是二代测序技术,因此再给大家详细介绍一下专门针对二代测序数据开发的基于de Bruijn Graph的从头拼接方法。

其中一个非常著名的软件就是Velvet,是基于de Bruijn Graph设计的经典代表,其算法示意图如下:


Velvet从头组装软件的算法设计示意图( 图片来源:Zerbinoet al. 2008, Genome Research)。其中红色碱基为测序错误或SNP位点。

Velvet的组装原理,主要可分为这几个步骤:

1)首先把所有测序读段(reads)都分割为更小的片段k-mer;


Reads产生k-mer的过程示意图。这里k为7,假如read的长度为n,则总共可产生n-1个k-mer。

2)把每个k-mer作为一个节点,然后判断k-mer之间是否有k-1碱基的重叠,如果有则作为两个不同的节点连接起来。依次这样连接所有可连接的k-mer就形成了Velvet从头组装软件算法设计示意图中第2步的de Bruijn Graph;

3)依次合并相邻的k-mer,因为相邻的k-mer有k-1个碱基的重叠,就可进一步简化de Bruijn Graph形成Velvet从头组装软件算法设计示意图中第3步的简化后的图;

4)使用一系列算法消除由测序错误而形成的tips(具体如Velvet从头组装软件的算法设计示意图中所示),并合并bubbles(两条或多条路径序列,一般由SNP造成,如Velvet从头组装软件的算法设计示意图);

5)最后拼接得到Contig序列。

值得注意的是,Velvet从头组装软件算法设计示意图中最后一步拼接产生了回文序列,主要是由于原始序列中含有回文,如果k取为偶数(图中k=4)就容易在组装中形成这种现象。

为了有效的避免拼接中产生回文序列,一般k取为奇数。

那么基于基因组测序数据的从头拼接软件,那些具有较好的性能呢?


不同从头组装软件在拼接C.elegans、Yeast、E.coli、Swinepox基因组时的准确性和覆盖度比较( 图片来源:Zhanget al. PlosOne, 2011)

从上图中可以看出,Velvet和SOAPdenovo在拼接C.elegans、Yeast、E.coli、Swinepox的基因组序列时,相对于其他软件,组装结果更准确(A:Percentage of correctly mapped contigs)且拼接出来的序列能更完整的覆盖原基因组序列(B:Genome Coverage)。

大部分处理测序数据的软件都是由国外开发的,其中这里提到的SOAPdenovo为华大基因开发的从头拼接软件。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343

推荐阅读更多精彩内容