深度学习和图模型的关系

Neil Zhu,简书ID Not_GOD,University AI 创始人 & Chief Scientist,致力于推进世界人工智能化进程。制定并实施 UAI 中长期增长战略和目标,带领团队快速成长为人工智能领域最专业的力量。
作为行业领导者,他和UAI一起在2014年创建了TASA(中国最早的人工智能社团), DL Center(深度学习知识中心全球价值网络),AI growth(行业智库培训)等,为中国的人工智能人才建设输送了大量的血液和养分。此外,他还参与或者举办过各类国际性的人工智能峰会和活动,产生了巨大的影响力,书写了60万字的人工智能精品技术内容,生产翻译了全球第一本深度学习入门书《神经网络与深度学习》,生产的内容被大量的专业垂直公众号和媒体转载与连载。曾经受邀为国内顶尖大学制定人工智能学习规划和教授人工智能前沿课程,均受学生和老师好评。

Yann LeCun 在 Google+ 上发布的回答
我经常被问起“深度学习与图模型如何比较?”。这个问题没有答案——因为深度学习和图模型是正交的概念,它们可以(并已经)被组合起来使用了。

让我说得更加清楚一些:这两个模式并不是对立的,它们可以有效地组合起来。

当然,DBM(Deep Boltzmann Machine)是概率因子图的一种形式。但是这些概念用其他的一些方式也可以组合在一起。

例如,你可以想象一个因子图,这些因子本身包含一个DNN(Deep Neural Net)。最能说明这种情况的,就是动态因子图(Dynamic Factor Graph),在这样的图中,在$$t$$时刻的状态向量,$$Z(t)$$ 是由之前的状态和输入,通过一个 DNN (可能使用了一个时态卷积网络)得到的。比如说当log 因子为 $$||Z(t) - G(Z(t-1, X(t)))||^2$$,其中 $$G$$ 是一个 DNN。

这个例子简要说明了,在给定 $$Z(t-1)$$ 和 $$X(t)$$下 $$Z(t)$$ 的条件概率分布是一个以均值为 $$G(Z(t-1), X(t))$$ 的高斯分布,协方差为单位元。

这种类型的动态因子图可以用来建模高维度的时间序列。当序列 $$X(t)$$ 被观测到时,我们可以通过最小化log 因子的和(也常常被称为能量函数)来推断最可能的隐藏状态 $$Z(t)$$ 的序列。

一旦最优的 $$Z(t)$$ 被找到,我们可以更新网络 $$G()$$ 的参数来让能量变得更小。

更加高级的处理方式是可以用来学习高斯分布的协方差,或者来对 $$Z(t)$$ 的序列进行边缘化,而不仅仅使用后验最大推断(仅仅考虑有最低能量的序列)。

这种深度因子的因子图在 ECML 2009 上提出,这也是我和我的学生 Piotr Mirowski(现在 Bell 实验室)。“Factor Graphs for Time Series Modeling

相似的模型出现在使用 auto-encoder 的非监督预学习进行语言建模的论文中 “Dynamic Auto-Encoders for Semantic Indexing

另外将深度学习和图模型组合起来的方式是通用结构化预测(structured prediction)。尽管这听起来是一个新的想法,但是其历史要追溯到90年代早期。Leon Bottou 和 Xavier Driancourt 使用一个序列在时态卷积网络上进行语音识别。他们同时训练这个卷积网络和灵活的词模型,在词的层次上,通过在时间相关的模块(这个可以看做是一种因子图,其中时间相关的函数是一个隐含变量)上进行梯度的后向传播进行。

在90年代早期,Leon、Yoshua Bengio 和 Patrick Haffner 设计了一个混合的语音识别系统,其中在词(或者句子)的层次使用一个辨别式的规则同时训练得到一个时态卷及网络和一个隐马尔科夫模型。

在多年以后,Leon、Yoshua、Patrick 和 我使用了相似的想法来训练我们的手写识别系统。我们放弃了规范化的HMM,使用了没有进行规划化的基于能量的因子图。当训练是辨别式的时候,规范化操作是多余的(甚至有害的)。我们称这个为“Graph Transformer Network”。这个最初在 CVPR 1997 和 ICASSP 1997上发表。

一些关于这个的历史在“A Tutorial on Energy-Based Learning”上有较为详细的介绍。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,884评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,755评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,369评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,799评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,910评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,096评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,159评论 3 411
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,917评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,360评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,673评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,814评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,509评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,156评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,123评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,641评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,728评论 2 351

推荐阅读更多精彩内容