以官方例子如下,调试sharding-sphere代码:
public static void main(final String[] args) throws SQLException {
DataSource dataSource = getShardingDataSource();
dropTable(dataSource);
createTable(dataSource);
insert(dataSource);
updateFailure(dataSource);
}
可以看到,首先获取数据源连接池,然后执行drop语句,创建表,插入数据,再修改。在获取数据源的时候,实质初始化的是sharding-sphere的数据源。
private static DataSource getShardingDataSource() throws SQLException {
ShardingRuleConfiguration shardingRuleConfig = new ShardingRuleConfiguration();
TableRuleConfiguration orderTableRuleConfig = new TableRuleConfiguration();
orderTableRuleConfig.setLogicTable("t_order");
orderTableRuleConfig.setActualDataNodes("ds_trans_${0..1}.t_order_${0..1}");
shardingRuleConfig.getTableRuleConfigs().add(orderTableRuleConfig);
TableRuleConfiguration orderItemTableRuleConfig = new TableRuleConfiguration();
orderItemTableRuleConfig.setLogicTable("t_order_item");
orderItemTableRuleConfig.setActualDataNodes("ds_trans_${0..1}.t_order_item_${0..1}");
shardingRuleConfig.getTableRuleConfigs().add(orderItemTableRuleConfig);
shardingRuleConfig.getBindingTableGroups().add("t_order, t_order_item");
shardingRuleConfig.setDefaultDatabaseShardingStrategyConfig(new StandardShardingStrategyConfiguration("user_id", new ModuloShardingAlgorithm()));
shardingRuleConfig.setDefaultTableShardingStrategyConfig(new StandardShardingStrategyConfiguration("order_id", new ModuloShardingAlgorithm()));
return ShardingDataSourceFactory.createDataSource(createDataSourceMap(), shardingRuleConfig, new HashMap<String, Object>(), new Properties());
}
}
public final class ShardingDataSourceFactory {
public static DataSource createDataSource(Map<String, DataSource> dataSourceMap, ShardingRuleConfiguration shardingRuleConfig, Map<String, Object> configMap, Properties props) throws SQLException {
return new ShardingDataSource(dataSourceMap, new ShardingRule(shardingRuleConfig, dataSourceMap.keySet()), configMap, props);
}
private ShardingDataSourceFactory() {
}
}
可以看到,最终初始化的是ShardingDataSource数据源,该数据源实现了datasource接口,最终执行逻辑,sql词法分析,sql语法分析和jdbc强行扯上了不明不白的关系。如图:
datasource.png
sharding-sphere.png
再看drop语句,实质是执行了update语句。
private static void dropTable(final DataSource dataSource) throws SQLException {
executeUpdate(dataSource, "DROP TABLE IF EXISTS t_order_item");
executeUpdate(dataSource, "DROP TABLE IF EXISTS t_order");
}
![statement.png](https://upload-images.jianshu.io/upload_images/3397380-7132d7299fd9ef5b.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
private static void executeUpdate(final DataSource dataSource, final String sql) throws SQLException {
try (
Connection conn = dataSource.getConnection();
PreparedStatement preparedStatement = conn.prepareStatement(sql)) {
preparedStatement.executeUpdate();
}
}
public ShardingConnection getConnection() {
return new ShardingConnection(this.shardingContext);
}
这里拿到的connection是ShardingConnection语句,connections中实质是ShardingConnection。
而preparedStatement对象,则为ShardingPreparedStatement。
public PreparedStatement prepareStatement(String sql, int autoGeneratedKeys) {
return new ShardingPreparedStatement(this, sql, autoGeneratedKeys);
}
statement.png
connnection.png
statement.png
从类图来看,可以看出,sharding-sphere是重写了jdbc接口,包含datasource接口,connection接口,preparedStatement接口。
而在执行sql的时候,则是调用ShardingPreparedStatement的executeUpdate方法,如下:
@Override
public int executeUpdate() throws SQLException {
try {
Collection<PreparedStatementUnit> preparedStatementUnits = route();
return new PreparedStatementExecutor(
getConnection().getShardingContext().getExecutorEngine(), routeResult.getSqlStatement().getType(), preparedStatementUnits).executeUpdate();
} finally {
if (routeResult != null && connection != null) {
JDBCShardingRefreshHandler.build(routeResult, connection).execute();
}
clearBatch();
}
}
可以看到,先做sql路由,获取sql执行单元,然后new一个执行器去执行,在获取执行单元的时候,首先通过sql路由引擎做服务路由,获取sql执行单元,遍历并组装参数,返回执行引擎单元,替代占位符,并返回,交由sql执行器去执行。
private Collection<PreparedStatementUnit> route() throws SQLException {
Collection<PreparedStatementUnit> result = new LinkedList<>();
routeResult = routingEngine.route(getParameters());
for (SQLExecutionUnit each : routeResult.getExecutionUnits()) {
PreparedStatement preparedStatement = generatePreparedStatement(each);
routedStatements.add(preparedStatement);
replaySetParameter(preparedStatement, each.getSqlUnit().getParameterSets().get(0));
result.add(new PreparedStatementUnit(each, preparedStatement));
}
return result;
}
public int executeUpdate() throws SQLException {
List<Integer> results = executorEngine.execute(sqlType, preparedStatementUnits, new ExecuteCallback<Integer>() {
@Override
public Integer execute(final BaseStatementUnit baseStatementUnit) throws Exception {
return ((PreparedStatement) baseStatementUnit.getStatement()).executeUpdate();
}
});
return accumulate(results);
}
sql执行引擎在执行的过程中,遍历执行单元,分别在不同的数据库中执行,最终合并结果集,返回结果。
public <T> List<T> execute(
final SQLType sqlType, final Collection<? extends BaseStatementUnit> baseStatementUnits, final ExecuteCallback<T> executeCallback) throws SQLException {
//异步执行
ListenableFuture<List<T>> restFutures = asyncExecute(sqlType, Lists.newArrayList(iterator), executeCallback);
T firstOutput;
List<T> restOutputs;
try {
firstOutput = syncExecute(sqlType, firstInput, executeCallback);
restOutputs = restFutures.get();
// CHECKSTYLE:OFF
} catch (final Exception ex) {
// CHECKSTYLE:ON
event.setException(ex);
event.setEventExecutionType(EventExecutionType.EXECUTE_FAILURE);
EventBusInstance.getInstance().post(event);
ExecutorExceptionHandler.handleException(ex);
return null;
}
event.setEventExecutionType(EventExecutionType.EXECUTE_SUCCESS);
EventBusInstance.getInstance().post(event);
List<T> result = Lists.newLinkedList(restOutputs);
result.add(0, firstOutput);
return result;
}
在异步执行的时候,实质是多线程编程,future等待,最后合并结果。
private <T> ListenableFuture<List<T>> asyncExecute(
final SQLType sqlType, final Collection<BaseStatementUnit> baseStatementUnits, final ExecuteCallback<T> executeCallback) {
List<ListenableFuture<T>> result = new ArrayList<>(baseStatementUnits.size());
final boolean isExceptionThrown = ExecutorExceptionHandler.isExceptionThrown();
final Map<String, Object> dataMap = ExecutorDataMap.getDataMap();
for (final BaseStatementUnit each : baseStatementUnits) {
result.add(executorService.submit(new Callable<T>() {
@Override
public T call() throws Exception {
return executeInternal(sqlType, each, executeCallback, isExceptionThrown, dataMap);
}
}));
}
return Futures.allAsList(result);
}
private <T> T executeInternal(final SQLType sqlType, final BaseStatementUnit baseStatementUnit, final ExecuteCallback<T> executeCallback,
final boolean isExceptionThrown, final Map<String, Object> dataMap) throws Exception {
synchronized (baseStatementUnit.getStatement().getConnection()) {
T result;
ExecutorExceptionHandler.setExceptionThrown(isExceptionThrown);
ExecutorDataMap.setDataMap(dataMap);
List<AbstractExecutionEvent> events = new LinkedList<>();
for (List<Object> each : baseStatementUnit.getSqlExecutionUnit().getSqlUnit().getParameterSets()) {
events.add(getExecutionEvent(sqlType, baseStatementUnit, each));
}
for (AbstractExecutionEvent event : events) {
EventBusInstance.getInstance().post(event);
}
try {
result = executeCallback.execute(baseStatementUnit);
} catch (final SQLException ex) {
for (AbstractExecutionEvent each : events) {
each.setEventExecutionType(EventExecutionType.EXECUTE_FAILURE);
each.setException(ex);
EventBusInstance.getInstance().post(each);
ExecutorExceptionHandler.handleException(ex);
}
return null;
}
for (AbstractExecutionEvent each : events) {
each.setEventExecutionType(EventExecutionType.EXECUTE_SUCCESS);
EventBusInstance.getInstance().post(each);
}
return result;
}
}
fyi