Spark RDD API

1.aggregate:     先进行局部聚合,在进行全局聚合

 val z = sc.parallelize(List(1,2,3,4,5,6), 2)

 z.mapPartitionsWithIndex(myfunc).collect

        res28: Array[String] = Array([partID:0, val: 1], [partID:0, val: 2], [partID:0, val: 3], [partID:1, val: 4], [partID:1, val: 5], [partID:1, val: 6])

z.aggregate(0)(math.max(_, _), _ + _)

res40: Int = 9

// This example returns 16 since the initial value is 5

// reduce of partition 0 will be max(5, 1, 2, 3) = 5

// reduce of partition 1 will be max(5, 4, 5, 6) = 6

// final reduce across partitions will be 5 + 5 + 6 = 16

// note the final reduce include the initial value

z.aggregate(5)(math.max(_, _), _ + _)

res29: Int = 16

val z = sc.parallelize(List("a","b","c","d","e","f"),2)

z.mapPartitionsWithIndex(myfunc).collect

res31: Array[String] = Array([partID:0, val: a], [partID:0, val: b], [partID:0, val: c], [partID:1, val: d], [partID:1, val: e], [partID:1, val: f])

z.aggregate("")(_ + _, _+_)

res115: String = abcdef    

z.aggregate("x")(_ + _, _+_)

res116: String = xxdefxabc

val z = sc.parallelize(List("12","23","345","4567"),2)

z.aggregate("")((x,y) => math.max(x.length, y.length).toString, (x,y) => x + y)

res141: String = 42

z.aggregate("")((x,y) => math.min(x.length, y.length).toString, (x,y) => x + y)

res142: String = 11

val z = sc.parallelize(List("12","23","345",""),2)

z.aggregate("")((x,y) => math.min(x.length, y.length).toString, (x,y) => x + y)

res143: String = 10



2.aggregateByKey:key相同的值在进行聚合操作

val pairRDD = sc.parallelize(List( ("cat",2), ("cat", 5), ("mouse", 4),("cat", 12), ("dog", 12), ("mouse", 2)), 2)

// lets have a look at what is in the partitions

def myfunc(index: Int, iter: Iterator[(String, Int)]) : Iterator[String] = {

  iter.map(x => "[partID:" +  index + ", val: " + x + "]")

}

pairRDD.mapPartitionsWithIndex(myfunc).collect

res2: Array[String] = Array([partID:0, val: (cat,2)], [partID:0, val: (cat,5)], [partID:0, val: (mouse,4)], [partID:1, val: (cat,12)], [partID:1, val: (dog,12)], [partID:1, val: (mouse,2)])

pairRDD.aggregateByKey(0)(math.max(_, _), _ + _).collect

res3: Array[(String, Int)] = Array((dog,12), (cat,17), (mouse,6))

pairRDD.aggregateByKey(100)(math.max(_, _), _ + _).collect

res4: Array[(String, Int)] = Array((dog,100), (cat,200), (mouse,200))


3.cartesian:将每一集合的值和另一个集合的值一一对应返回一个元祖

val x = sc.parallelize(List(1,2,3,4,5))

val y = sc.parallelize(List(6,7,8,9,10))

x.cartesian(y).collect

res0: Array[(Int, Int)] = Array((1,6), (1,7), (1,8), (1,9), (1,10), (2,6), (2,7), (2,8), (2,9), (2,10), (3,6), (3,7), (3,8), (3,9), (3,10), (4,6), (5,6), (4,7), (5,7), (4,8), (5,8), (4,9), (4,10), (5,9), (5,10))

4..checkpoint:读取文件,返回指定的行数

sc.setCheckpointDir("my_directory_name")

val a = sc.parallelize(1 to 4)

a.checkpoint

a.count

14/02/25 18:13:53 INFO SparkContext: Starting job: count at :15

...

14/02/25 18:13:53 INFO MemoryStore: Block broadcast_5 stored as values to memory (estimated size 115.7 KB, free 296.3 MB)

14/02/25 18:13:53 INFO RDDCheckpointData: Done checkpointing RDD 11 to file:/home/cloudera/Documents/spark-0.9.0-incubating-bin-cdh4/bin/my_directory_name/65407913-fdc6-4ec1-82c9-48a1656b95d6/rdd-11, new parent is RDD 12

res23: Long = 4

5.coalesce, repartition:重新分区 第一个参数是要分多少区,第二个参数是否shuffle 默认false  少分区变多分区 true   多分区变少分区 false

val y = sc.parallelize(1 to 10, 10)

val z = y.coalesce(2, false)

val s=y.repartition(2, false)

z.partitions.length

res9: Int = 2

s.partitions.length

res10: Int = 2

6.cogroup [Pair], groupWith [Pair]:返回key值的value集合

val a = sc.parallelize(List(1, 2, 1, 3), 1)

val b = a.map((_, "b"))

val c = a.map((_, "c"))

b.cogroup(c).collect

res7: Array[(Int, (Iterable[String], Iterable[String]))] = Array(

(2,(ArrayBuffer(b),ArrayBuffer(c))),

(3,(ArrayBuffer(b),ArrayBuffer(c))),

(1,(ArrayBuffer(b, b),ArrayBuffer(c, c)))

)

val d = a.map((_, "d"))

b.cogroup(c, d).collect

res9: Array[(Int, (Iterable[String], Iterable[String], Iterable[String]))] = Array(

(2,(ArrayBuffer(b),ArrayBuffer(c),ArrayBuffer(d))),

(3,(ArrayBuffer(b),ArrayBuffer(c),ArrayBuffer(d))),

(1,(ArrayBuffer(b, b),ArrayBuffer(c, c),ArrayBuffer(d, d)))

)

val x = sc.parallelize(List((1, "apple"), (2, "banana"), (3, "orange"), (4, "kiwi")), 2)

val y = sc.parallelize(List((5, "computer"), (1, "laptop"), (1, "desktop"), (4, "iPad")), 2)

x.cogroup(y).collect

res23: Array[(Int, (Iterable[String], Iterable[String]))] = Array(

(4,(ArrayBuffer(kiwi),ArrayBuffer(iPad))), 

(2,(ArrayBuffer(banana),ArrayBuffer())), 

(3,(ArrayBuffer(orange),ArrayBuffer())),

(1,(ArrayBuffer(apple),ArrayBuffer(laptop, desktop))),

(5,(ArrayBuffer(),ArrayBuffer(computer))))

6.collect, toArray:在驱动程序中,以数组的形式返回数据集的所有元素

val c = sc.parallelize(List("Gnu", "Cat", "Rat", "Dog", "Gnu", "Rat"), 2)

c.collect

res29: Array[String] = Array(Gnu, Cat, Rat, Dog, Gnu, Rat)

7.collectAsMap [Pair] :返回指定的元素,并且去重

val a = sc.parallelize(List(1, 2, 1, 3), 1)

val b = a.zip(a)

b.collectAsMap

res1: scala.collection.Map[Int,Int] = Map(2 -> 2, 1 -> 1, 3 -> 3)

8.combineByKey[Pair] :合并相同的key的值 rdd1.combineByKey(x => x, (a: Int, b: Int) => a + b, (m: Int, n: Int) => m + n)

val a = sc.parallelize(List("dog","cat","gnu","salmon","rabbit","turkey","wolf","bear","bee"), 3)

val b = sc.parallelize(List(1,1,2,2,2,1,2,2,2), 3)

val c = b.zip(a)

val d = c.combineByKey(List(_), (x:List[String], y:String) => y :: x, (x:List[String], y:List[String]) => x ::: y)

d.collect

res16: Array[(Int, List[String])] = Array((1,List(cat, dog, turkey)), (2,List(gnu, rabbit, salmon, bee, bear, wolf)))


9.context, sparkContext:一般用来创建RDD

val c = sc.parallelize(List("Gnu", "Cat", "Rat", "Dog"), 2)

c.context

res8: org.apache.spark.SparkContext = org.apache.spark.SparkContext@58c1c2f1

10.count:返回RDD的元素个数

val c = sc.parallelize(List("Gnu", "Cat", "Rat", "Dog"), 2)

c.count

res2: Long = 4

11.countApproxDistinct(x):计算Rdd中元素的大约个数,并且去重,x代表精度,x越小代表计算的越仔细。 

val a = sc.parallelize(1 to 10000, 20)

val b = a++a++a++a++a

b.countApproxDistinct(0.1)

res14: Long = 8224

b.countApproxDistinct(0.05)

res15: Long = 9750

b.countApproxDistinct(0.01)

res16: Long = 9947

b.countApproxDistinct(0.001)

res0: Long = 10000

12.countApproxDistinctByKey(x):该函数根据精确度double,来计算相同key的大约个数。

  val a = sc.parallelize(List("wang","li","cao","zou"),2);

    val b = sc.parallelize(a.takeSample(true,1000,0))  //随机抽取1000个样本

    val c = sc.parallelize(1 to b.count.toInt)

    val d = b.zip(c)

    测试1:

    d.countApproxDistinctByKey(0.1).collect //计算相同可以得大约个数

 输出结果为:

     Array[(String, Long)] = Array((cao,286), (li,253), (zou,280), (wang,193))

 测试2:

     d.countApproxDistinctByKey(0.2).collect //计算相同可以得大约个数

 输出结果为:

     Array[(String, Long)] = Array((cao,291), (li,308), (zou,214), (wang,220))

13.countByKey:计算相同key值的数目

val c = sc.parallelize(List((3, "Gnu"), (3, "Yak"), (5, "Mouse"), (3, "Dog")), 2)

c.countByKey

res3: scala.collection.Map[Int,Long] = Map(3 -> 3, 5 -> 1)

14.countByValue:统计数组中相同元素的值

val b = sc.parallelize(List(1,2,3,4,5,6,7,8,2,4,2,1,1,1,1,1))

b.countByValue

res27: scala.collection.Map[Int,Long] = Map(5 -> 1, 8 -> 1, 3 -> 1, 6 -> 1, 1 -> 6, 2 -> 3, 4 -> 2, 7 -> 1)

15.dependencies

       在RDD中将依赖划分成两种类型:窄依赖(Narrow Dependencies)和宽依赖(Wide Dependencies)。

            窄依赖:是指每一个父RDD的分区都至多被一个子RDD的分区使用(每一个父RDD最多只能被一个子RDD使用)。

           宽依赖:是多个子RDD的分区依赖一个父RDD的分区(一个父RDD被多个子RDD使用)。

val b = sc.parallelize(List(1,2,3,4,5,6,7,8,2,4,2,1,1,1,1,1))

b: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[32] at parallelize at <console>:12

b.dependencies.length

Int = 0

b.map(a => a).dependencies.length

res40: Int = 1

b.cartesian(a).dependencies.length

res41: Int = 2

b.cartesian(a).dependencies

res42: Seq[org.apache.spark.Dependency[_]] = List(org.apache.spark.rdd.CartesianRDD$$anon$1@576ddaaa, org.apache.spark.rdd.CartesianRDD$$anon$2@6d2efbbd)

16.distinct:对源RDD进行去重后返回一个新的RDD

val c = sc.parallelize(List("Gnu", "Cat", "Rat", "Dog", "Gnu", "Rat"), 2)

c.distinct.collect

res6: Array[String] = Array(Dog, Gnu, Cat, Rat)

val a = sc.parallelize(List(1,2,3,4,5,6,7,8,9,10))

a.distinct(2).partitions.length

res16: Int = 2

a.distinct(3).partitions.length

res17: Int = 3

17.first:返回集合的第一个元素

val c = sc.parallelize(List("Gnu", "Cat", "Rat", "Dog"), 2)

c.first

res1: String = Gnu

18.返回一个新的RDD,该RDD由经过func函数计算后返回值为true的输入元素组成

val a = sc.parallelize(1 to 10, 3)

val b = a.filter(_ % 2 == 0)

 b.collect

res3: Array[Int] = Array(2, 4, 6, 8, 10)

19.filterByRange [Ordered]:针对元祖取返回值为true的元素

val randRDD = sc.parallelize(List( (2,"cat"), (6, "mouse"),(7, "cup"), (3, "book"), (4, "tv"), (1, "screen"), (5, "heater")), 3)

val sortedRDD = randRDD.sortByKey()

sortedRDD.filterByRange(1, 3).collect

res66: Array[(Int, String)] = Array((1,screen), (2,cat), (3,book))

20.filterWith

val a = sc.parallelize(1 to 9, 3)

val b = a.filterWith(i => i)((x,i) => x % 2 == 0 || i % 2 == 0)

b.collect

res37: Array[Int] = Array(1, 2, 3, 4, 6, 7, 8, 9)

val a = sc.parallelize(List(1,2,3,4,5,6,7,8,9,10), 5)

a.filterWith(x=> x)((a, b) =>  b == 0).collect

res30: Array[Int] = Array(1, 2)

a.filterWith(x=> x)((a, b) =>  a % (b+1) == 0).collect

res33: Array[Int] = Array(1, 2, 4, 6, 8, 10)

a.filterWith(x=> x.toString)((a, b) =>  b == "2").collect

res34: Array[Int] = Array(5, 6)

20. flatmap:对集合中每个元素进行操作然后再扁平化。 

val a = sc.parallelize(1 to 10, 5)

a.flatMap(1 to _).collect

res47: Array[Int] = Array(1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

sc.parallelize(List(1, 2, 3), 2).flatMap(x => List(x, x, x)).collect

res85: Array[Int] = Array(1, 1, 1, 2, 2, 2, 3, 3, 3)

// The program below generates a random number of copies (up to 10) of the items in the list.

val x  = sc.parallelize(1 to 10, 3)

x.flatMap(List.fill(scala.util.Random.nextInt(10))(_)).collect

res1: Array[Int] = Array(1, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10)

21.flatMapValues:对元祖中value值进行操作然后再扁平化

val a = sc.parallelize(List("dog", "tiger", "lion", "cat", "panther", "eagle"), 2)

val b = a.map(x => (x.length, x))

b.flatMapValues("x" + _ + "x").collect

res6: Array[(Int, Char)] = Array((3,x), (3,d), (3,o), (3,g), (3,x), (5,x), (5,t), (5,i), (5,g), (5,e), (5,r), (5,x), (4,x), (4,l), (4,i), (4,o), (4,n), (4,x), (3,x), (3,c), (3,a), (3,t), (3,x), (7,x), (7,p), (7,a), (7,n), (7,t), (7,h), (7,e), (7,r), (7,x), (5,x), (5,e), (5,a), (5,g), (5,l), (5,e), (5,x))

22.fold(*):算子其实就是先对rdd分区的每一个分区进行使用op函数,在调用op函数过程中将zeroValue参与计算,最后在对每一个分区的结果调用op函数(和aggregate有些相似)

val a = sc.parallelize(List(1,2,3), 3)

a.fold(0)(_ + _)

res59: Int = 6

23:foldByKey [Pair]:根据相同key值对value值进行计算

val a = sc.parallelize(List("dog", "cat", "owl", "gnu", "ant"), 2)

val b = a.map(x => (x.length, x))

b.foldByKey("")(_ + _).collect

res84: Array[(Int, String)] = Array((3,dogcatowlgnuant)

val a = sc.parallelize(List("dog", "tiger", "lion", "cat", "panther", "eagle"), 2)

val b = a.map(x => (x.length, x))

b.foldByKey("")(_ + _).collect

res85: Array[(Int, String)] = Array((4,lion), (3,dogcat), (7,panther), (5,tigereagle))

24.foreach:在数据集的每一个元素上,运行函数func进行更新。

val c = sc.parallelize(List("cat", "dog", "tiger", "lion", "gnu", "crocodile", "ant", "whale", "dolphin", "spider"), 3)

c.foreach(x => println(x + "s are yummy"))

lions are yummy

gnus are yummy

crocodiles are yummy

ants are yummy

whales are yummy

dolphins are yummy

spiders are yummy

25.foreachPartition:按照分区进行更新

val b = sc.parallelize(List(1, 2, 3, 4, 5, 6, 7, 8, 9), 3)

b.foreachPartition(x => println(x.reduce(_ + _)))

6

15

24

26.glom:该函数是将RDD中每一个分区中类型为T的元素转换成Array[T],这样每一个分区就只有一个数组元素。

val a = sc.parallelize(1 to 100, 3)

a.glom.collect

res8: Array[Array[Int]] = Array(Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33), Array(34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66), Array(67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100))

27.groupBy:分区

val a = sc.parallelize(1 to 9, 3)

a.groupBy(x => { if (x % 2 == 0) "even" else "odd" }).collect

res42: Array[(String, Seq[Int])] = Array((even,ArrayBuffer(2, 4, 6, 8)), (odd,ArrayBuffer(1, 3, 5, 7, 9)))

val a = sc.parallelize(1 to 9, 3)

def myfunc(a: Int) : Int =

{

a % 2

}

a.groupBy(myfunc).collect

//根据取余的结果进行分区

res3: Array[(Int, Seq[Int])] = Array((0,ArrayBuffer(2, 4, 6, 8)), (1,ArrayBuffer(1, 3, 5, 7, 9)))

val a = sc.parallelize(1 to 9, 3)

def myfunc(a: Int) : Int =

{

a % 2

}

a.groupBy(x => myfunc(x), 3).collect

a.groupBy(myfunc(_), 1).collect

res7: Array[(Int, Seq[Int])] = Array((0,ArrayBuffer(2, 4, 6, 8)), (1,ArrayBuffer(1, 3, 5, 7, 9)))

import org.apache.spark.Partitioner

class MyPartitioner extends Partitioner {

def numPartitions: Int = 2

def getPartition(key: Any): Int =

{

key match

{

case null     => 0

case key: Int => key          % numPartitions

case _        => key.hashCode % numPartitions

}

}

override def equals(other: Any): Boolean =

{

other match

{

case h: MyPartitioner => true

case _                => false

}

}

}

val a = sc.parallelize(1 to 9, 3)

val p = new MyPartitioner()

val b = a.groupBy((x:Int) => { x }, p)

val c = b.mapWith(i => i)((a, b) => (b, a))

c.collect

res42: Array[(Int, (Int, Seq[Int]))] = Array((0,(4,ArrayBuffer(4))), (0,(2,ArrayBuffer(2))), (0,(6,ArrayBuffer(6))), (0,(8,ArrayBuffer(8))), (1,(9,ArrayBuffer(9))), (1,(3,ArrayBuffer(3))), (1,(1,ArrayBuffer(1))), (1,(7,ArrayBuffer(7))), (1,(5,ArrayBuffer(5))))

28.groupByKey :在一个(K,V)的RDD上调用,返回一个(K, Iterator[V])的RDD

val a = sc.parallelize(List("dog", "tiger", "lion", "cat", "spider", "eagle"), 2)

val b = a.keyBy(_.length)

b.groupByKey.collect

res11: Array[(Int, Seq[String])] = Array((4,ArrayBuffer(lion)), (6,ArrayBuffer(spider)), (3,ArrayBuffer(dog, cat)), (5,ArrayBuffer(tiger, eagle)))

29.id:

val y = sc.parallelize(1 to 10, 10)

y.id

res16: Int = 19

30.join:在类型为(K,V)和(K,W)的RDD上调用,返回一个相同key对应的所有元素对在一起的(K,(V,W))的RDD  相当于内连接(求交集)

val a = sc.parallelize(List("dog", "salmon", "salmon", "rat", "elephant"), 3)

val b = a.keyBy(_.length)

val c = sc.parallelize(List("dog","cat","gnu","salmon","rabbit","turkey","wolf","bear","bee"), 3)

val d = c.keyBy(_.length)

b.join(d).collect

res0: Array[(Int, (String, String))] = Array((6,(salmon,salmon)), (6,(salmon,rabbit)), (6,(salmon,turkey)), (6,(salmon,salmon)), (6,(salmon,rabbit)), (6,(salmon,turkey)), (3,(dog,dog)), (3,(dog,cat)), (3,(dog,gnu)), (3,(dog,bee)), (3,(rat,dog)), (3,(rat,cat)), (3,(rat,gnu)), (3,(rat,bee)))

31.keyBy:对一个数组定义key值,返回一个(k,v)的RDD

val a = sc.parallelize(List("dog", "salmon", "salmon", "rat", "elephant"), 3)

val b = a.keyBy(_.length)

b.collect

res26: Array[(Int, String)] = Array((3,dog), (6,salmon), (6,salmon), (3,rat), (8,elephant))

32.keys:返回集合中key的值

val a = sc.parallelize(List("dog", "tiger", "lion", "cat", "panther", "eagle"), 2)

val b = a.map(x => (x.length, x))

b.keys.collect

res2: Array[Int] = Array(3, 5, 4, 3, 7, 5)

33.leftOuterJoin:

    def leftOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (V, Option[W]))]

    def leftOuterJoin[W](other: RDD[(K, W)], numPartitions: Int): RDD[(K, (V, Option[W]))]

    def leftOuterJoin[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (V, Option[W]))]

val a = sc.parallelize(List("dog", "salmon", "salmon", "rat", "elephant"), 3)

val b = a.keyBy(_.length)

val c = sc.parallelize(List("dog","cat","gnu","salmon","rabbit","turkey","wolf","bear","bee"), 3)

val d = c.keyBy(_.length)

b.leftOuterJoin(d).collect

res1: Array[(Int, (String, Option[String]))] = Array((6,(salmon,Some(salmon))), (6,(salmon,Some(rabbit))), (6,(salmon,Some(turkey))), (6,(salmon,Some(salmon))), (6,(salmon,Some(rabbit))), (6,(salmon,Some(turkey))), (3,(dog,Some(dog))), (3,(dog,Some(cat))), (3,(dog,Some(gnu))), (3,(dog,Some(bee))), (3,(rat,Some(dog))), (3,(rat,Some(cat))), (3,(rat,Some(gnu))), (3,(rat,Some(bee))), (8,(elephant,None)))

34.lookup:对一个kv集合返回指定key长度的元素

val a = sc.parallelize(List("dog", "tiger", "lion", "cat", "panther", "eagle"), 2)

val b = a.map(x => (x.length, x))

b.lookup(5)

res0: Seq[String] = WrappedArray(tiger, eagle)

35.map:返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成

val a = sc.parallelize(List("dog", "salmon", "salmon", "rat", "elephant"), 3)

val b = a.map(_.length)

val c = a.zip(b)

c.collect

res0: Array[(String, Int)] = Array((dog,3), (salmon,6), (salmon,6), (rat,3), (elephant,8))

36.mapPartitions:类似于map,但独立地在RDD的每一个分片上运行,因此在类型为T的RDD上运行时,func的函数类型必须是Iterator[T] => Iterator[U]

(1)

val a = sc.parallelize(1 to 9, 3)

def myfunc[T](iter: Iterator[T]) : Iterator[(T, T)] = {

  var res = List[(T, T)]()

  var pre = iter.next

  while (iter.hasNext)

  {

    val cur = iter.next;

    res .::= (pre, cur)

    pre = cur;

  }

  res.iterator

}

a.mapPartitions(myfunc).collect

res0: Array[(Int, Int)] = Array((2,3), (1,2), (5,6), (4,5), (8,9), (7,8))

(2)

val x = sc.parallelize(List(1, 2, 3, 4, 5, 6, 7, 8, 9,10), 3)

def myfunc(iter: Iterator[Int]) : Iterator[Int] = {

var res = List[Int]()

while (iter.hasNext) {

val cur = iter.next;

res = res ::: List.fill(scala.util.Random.nextInt(10))(cur)

}

res.iterator

}

x.mapPartitions(myfunc).collect

// some of the number are not outputted at all. This is because the random number generated for it is zero.

res8: Array[Int] = Array(1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 7, 7, 7, 9, 9, 10)

37.mapPartitionsWithContext :针对文件,类似于mapPartitions

val a = sc.parallelize(1 to 9, 3)

import org.apache.spark.TaskContext

def myfunc(tc: TaskContext, iter: Iterator[Int]) : Iterator[Int] = {

  tc.addOnCompleteCallback(() => println(

    "Partition: "     + tc.partitionId +

    ", AttemptID: "   + tc.attemptId ))


  iter.toList.filter(_ % 2 == 0).iterator

}

a.mapPartitionsWithContext(myfunc).collect

14/04/01 23:05:48 INFO SparkContext: Starting job: collect at <console>:20

...

14/04/01 23:05:48 INFO Executor: Running task ID 0

Partition: 0, AttemptID: 0, Interrupted: false

...

14/04/01 23:05:48 INFO Executor: Running task ID 1

14/04/01 23:05:48 INFO TaskSetManager: Finished TID 0 in 470 ms on localhost (progress: 0/3)

...

14/04/01 23:05:48 INFO Executor: Running task ID 2

14/04/01 23:05:48 INFO TaskSetManager: Finished TID 1 in 23 ms on localhost (progress: 1/3)

14/04/01 23:05:48 INFO DAGScheduler: Completed ResultTask(0, 1)

?

res0: Array[Int] = Array(2, 6, 4, 8)

38.mapPartitionsWithIndex:类似于mapPartitions,但func带有一个整数参数表示分片的索引值,因此在类型为T的RDD上运行时,func的函数类型必须是(Int, Interator[T]) => Iterator[U]

val x = sc.parallelize(List(1,2,3,4,5,6,7,8,9,10), 3)

def myfunc(index: Int, iter: Iterator[Int]) : Iterator[String] = {

iter.map(x => index + "," + x)

}

x.mapPartitionsWithIndex(myfunc).collect()

res10: Array[String] = Array(0,1, 0,2, 0,3, 1,4, 1,5, 1,6, 2,7, 2,8, 2,9, 2,10)

39.mapValues:对kv集合中的v进行一些操作

val a = sc.parallelize(List("dog", "tiger", "lion", "cat", "panther", "eagle"), 2)

val b = a.map(x => (x.length, x))

b.mapValues("x" + _ + "x").collect

res5: Array[(Int, String)] = Array((3,xdogx), (5,xtigerx), (4,xlionx), (3,xcatx), (7,xpantherx), (5,xeaglex))

40.max:求最大值

val y = sc.parallelize(10 to 30)

y.max

res75: Int = 30

val a = sc.parallelize(List((10, "dog"), (3, "tiger"), (9, "lion"), (18, "cat")))

a.max

res6: (Int, String) = (18,cat)

41.min:求最小值

val y = sc.parallelize(10 to 30)

y.min

res75: Int = 10

val a = sc.parallelize(List((10, "dog"), (3, "tiger"), (9, "lion"), (8, "cat")))

a.min

res4: (Int, String) = (3,tiger)

42.name, setName

val y = sc.parallelize(1 to 10, 10)

y.name

res13: String = null

y.setName("Fancy RDD Name")

y.name

res15: String = Fancy RDD Name

43.partitions :分区

val b = sc.parallelize(List("Gnu", "Cat", "Rat", "Dog", "Gnu", "Rat"), 2)

b.partitions

res48: Array[org.apache.spark.Partition] = Array(org.apache.spark.rdd.ParallelCollectionPartition@18aa, org.apache.spark.rdd.ParallelCollectionPartition@18ab)

44.persist, cache :RDD缓存,可以避免重复计算从而减少时间,区别:cache内部调用了persist算子,cache默认就一个缓存级别MEMORY-ONLY ,而persist则可以选择缓存级别

val c = sc.parallelize(List("Gnu", "Cat", "Rat", "Dog", "Gnu", "Rat"), 2)

c.getStorageLevel

res0: org.apache.spark.storage.StorageLevel = StorageLevel(false, false, false, false, 1)

c.cache

c.getStorageLevel

res2: org.apache.spark.storage.StorageLevel = StorageLevel(false, true, false, true, 1)

45.reduce :通过func函数聚集RDD中的所有元素,这个功能必须是可交换且可并联的

val a = sc.parallelize(1 to 100, 3)

a.reduce(_ + _)

res41: Int = 5050

46.reduceByKey :在一个(K,V)的RDD上调用,返回一个(K,V)的RDD,使用指定的reduce函数,将相同key的值聚合到一起,与groupByKey类似,reduce任务的个数可以通过第二个可选的参数来设置

val a = sc.parallelize(List("dog", "cat", "owl", "gnu", "ant"), 2)

val b = a.map(x => (x.length, x))

b.reduceByKey(_ + _).collect

res86: Array[(Int, String)] = Array((3,dogcatowlgnuant))

val a = sc.parallelize(List("dog", "tiger", "lion", "cat", "panther", "eagle"), 2)

val b = a.map(x => (x.length, x))

b.reduceByKey(_ + _).collect

res87: Array[(Int, String)] = Array((4,lion), (3,dogcat), (7,panther), (5,tigereagle))

47.repartition:指定分区数量

val rdd = sc.parallelize(List(1, 2, 10, 4, 5, 2, 1, 1, 1), 3)

rdd.partitions.length

res2: Int = 3

val rdd2  = rdd.repartition(5)

rdd2.partitions.length

res6: Int = 5

48.repartitionAndSortWithinPartitions

    def repartitionAndSortWithinPartitions(partitioner: Partitioner): RDD[(K, V)]

// first we will do range partitioning which is not sorted

val randRDD = sc.parallelize(List( (2,"cat"), (6, "mouse"),(7, "cup"), (3, "book"), (4, "tv"), (1, "screen"), (5, "heater")), 3)

val rPartitioner = new org.apache.spark.RangePartitioner(3, randRDD)

val partitioned = randRDD.partitionBy(rPartitioner)

def myfunc(index: Int, iter: Iterator[(Int, String)]) : Iterator[String] = {

iter.map(x => "[partID:" +  index + ", val: " + x + "]")

}

partitioned.mapPartitionsWithIndex(myfunc).collect

res0: Array[String] = Array([partID:0, val: (2,cat)], [partID:0, val: (3,book)], [partID:0, val: (1,screen)], [partID:1, val: (4,tv)], [partID:1, val: (5,heater)], [partID:2, val: (6,mouse)], [partID:2, val: (7,cup)])

// now lets repartition but this time have it sorted

val partitioned = randRDD.repartitionAndSortWithinPartitions(rPartitioner)

def myfunc(index: Int, iter: Iterator[(Int, String)]) : Iterator[String] = {

iter.map(x => "[partID:" +  index + ", val: " + x + "]")

}

partitioned.mapPartitionsWithIndex(myfunc).collect

res1: Array[String] = Array([partID:0, val: (1,screen)], [partID:0, val: (2,cat)], [partID:0, val: (3,book)], [partID:1, val: (4,tv)], [partID:1, val: (5,heater)], [partID:2, val: (6,mouse)], [partID:2, val: (7,cup)])

49.rightOuterJoin:相当于数据库中的右连接

val a = sc.parallelize(List("dog", "salmon", "salmon", "rat", "elephant"), 3)

val b = a.keyBy(_.length)

val c = sc.parallelize(List("dog","cat","gnu","salmon","rabbit","turkey","wolf","bear","bee"), 3)

val d = c.keyBy(_.length)

b.rightOuterJoin(d).collect

res2: Array[(Int, (Option[String], String))] = Array((6,(Some(salmon),salmon)), (6,(Some(salmon),rabbit)), (6,(Some(salmon),turkey)), (6,(Some(salmon),salmon)), (6,(Some(salmon),rabbit)), (6,(Some(salmon),turkey)), (3,(Some(dog),dog)), (3,(Some(dog),cat)), (3,(Some(dog),gnu)), (3,(Some(dog),bee)), (3,(Some(rat),dog)), (3,(Some(rat),cat)), (3,(Some(rat),gnu)), (3,(Some(rat),bee)), (4,(None,wolf)), (4,(None,bear)))

50.saveAsObjectFile:将结果保存在指定路径

val x = sc.parallelize(1 to 100, 3)

x.saveAsObjectFile("objFile")

val y = sc.objectFile[Int]("objFile")

y.collect

res52: Array[Int] =  Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100)

51.saveAsSequenceFile:将数据集中的元素以Hadoop sequencefile的格式保存到指定的目录下,可以使HDFS或者其他Hadoop支持的文件系统。

val v = sc.parallelize(Array(("owl",3), ("gnu",4), ("dog",1), ("cat",2), ("ant",5)), 2)

v.saveAsSequenceFile("hd_seq_file")

14/04/19 05:45:43 INFO FileOutputCommitter: Saved output of task 'attempt_201404190545_0000_m_000001_191' to file:/home/cloudera/hd_seq_file

[cloudera@localhost ~]$ ll ~/hd_seq_file

total 8

-rwxr-xr-x 1 cloudera cloudera 117 Apr 19 05:45 part-00000

-rwxr-xr-x 1 cloudera cloudera 133 Apr 19 05:45 part-00001

-rwxr-xr-x 1 cloudera cloudera   0 Apr 19 05:45 _SUCCESS

52.saveAsTextFile:将数据集的元素以textfile的形式保存到HDFS文件系统或者其他支持的文件系统,对于每个元素,Spark将会调用toString方法,将它装换为文件中的文本

val a = sc.parallelize(1 to 10000, 3)

a.saveAsTextFile("mydata_a")

14/04/03 21:11:36 INFO FileOutputCommitter: Saved output of task 'attempt_201404032111_0000_m_000002_71' to file:/home/cloudera/Documents/spark-0.9.0-incubating-bin-cdh4/bin/mydata_a

[cloudera@localhost ~]$ head -n 5 ~/Documents/spark-0.9.0-incubating-bin-cdh4/bin/mydata_a/part-00000

1

2

3

4

5

// Produces 3 output files since we have created the a RDD with 3 partitions

[cloudera@localhost ~]$ ll ~/Documents/spark-0.9.0-incubating-bin-cdh4/bin/mydata_a/

-rwxr-xr-x 1 cloudera cloudera 15558 Apr  3 21:11 part-00000

-rwxr-xr-x 1 cloudera cloudera 16665 Apr  3 21:11 part-00001

-rwxr-xr-x 1 cloudera cloudera 16671 Apr  3 21:11 part-00002

53.sortBy:排序

val y = sc.parallelize(Array(5, 7, 1, 3, 2, 1))

y.sortBy(c => c, true).collect

res101: Array[Int] = Array(1, 1, 2, 3, 5, 7)

y.sortBy(c => c, false).collect

res102: Array[Int] = Array(7, 5, 3, 2, 1, 1)

val z = sc.parallelize(Array(("H", 10), ("A", 26), ("Z", 1), ("L", 5)))

z.sortBy(c => c._1, true).collect

res109: Array[(String, Int)] = Array((A,26), (H,10), (L,5), (Z,1))

z.sortBy(c => c._2, true).collect

res108: Array[(String, Int)] = Array((Z,1), (L,5), (H,10), (A,26))

54.sortByKey:在一个(K,V)的RDD上调用,K必须实现Ordered接口,返回一个按照key进行排序的(K,V)的RDD

val a = sc.parallelize(List("dog", "cat", "owl", "gnu", "ant"), 2)

val b = sc.parallelize(1 to a.count.toInt, 2)

val c = a.zip(b)

c.sortByKey(true).collect

res74: Array[(String, Int)] = Array((ant,5), (cat,2), (dog,1), (gnu,4), (owl,3))

c.sortByKey(false).collect

res75: Array[(String, Int)] = Array((owl,3), (gnu,4), (dog,1), (cat,2), (ant,5))

val a = sc.parallelize(1 to 100, 5)

val b = a.cartesian(a)

val c = sc.parallelize(b.takeSample(true, 5, 13), 2)

val d = c.sortByKey(false)

res56: Array[(Int, Int)] = Array((96,9), (84,76), (59,59), (53,65), (52,4))

55.subtract:返回前rdd元素不在后rdd的rdd

val a = sc.parallelize(1 to 9, 3)

val b = sc.parallelize(1 to 3, 3)

val c = a.subtract(b)

c.collect

res3: Array[Int] = Array(6, 9, 4, 7, 5, 8)

56.subtractByKey 返回前rddkey值元素不在后rdd的rdd

val a = sc.parallelize(List("dog", "tiger", "lion", "cat", "spider", "eagle"), 2)

val b = a.keyBy(_.length)

val c = sc.parallelize(List("ant", "falcon", "squid"), 2)

val d = c.keyBy(_.length)

b.subtractByKey(d).collect

res15: Array[(Int, String)] = Array((4,lion))

57.sum:求和

val x = sc.parallelize(List(1.0, 2.0, 3.0, 5.0, 20.0, 19.02, 19.29, 11.09, 21.0), 2)

x.sum

res17: Double = 101.39999999999999

58.take:求前几名的值

val b = sc.parallelize(List("dog", "cat", "ape", "salmon", "gnu"), 2)

b.take(2)

res18: Array[String] = Array(dog, cat)

val b = sc.parallelize(1 to 10000, 5000)

b.take(100)

res6: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100)

59.takeOrdered:求前几名的值加排序

val b = sc.parallelize(List("dog", "cat", "ape", "salmon", "gnu"), 2)

b.takeOrdered(2)

res19: Array[String] = Array(ape, cat)

60.top:排序求最大值的几个元素

val c = sc.parallelize(Array(6, 9, 4, 7, 5, 8), 2)

c.top(2)

res28: Array[Int] = Array(9, 8)

61.union:对源RDD和参数RDD求并集后返回一个新的RDD

val a = sc.parallelize(1 to 3, 1)

val b = sc.parallelize(5 to 7, 1)

(a ++ b).collect

res0: Array[Int] = Array(1, 2, 3, 5, 6, 7)

62.values:对kv的v进行操作

val a = sc.parallelize(List("dog", "tiger", "lion", "cat", "panther", "eagle"), 2)

val b = a.map(x => (x.length, x))

b.values.collect

res3: Array[String] = Array(dog, tiger, lion, cat, panther, eagle)

63.zip:将一个RDD的值与另一个RDD的值进行合并后返回一个kv类型的RDD

val a = sc.parallelize(1 to 100, 3)

val b = sc.parallelize(101 to 200, 3)

a.zip(b).collect

res1: Array[(Int, Int)] = Array((1,101), (2,102), (3,103), (4,104), (5,105), (6,106), (7,107), (8,108), (9,109), (10,110), (11,111), (12,112), (13,113), (14,114), (15,115), (16,116), (17,117), (18,118), (19,119), (20,120), (21,121), (22,122), (23,123), (24,124), (25,125), (26,126), (27,127), (28,128), (29,129), (30,130), (31,131), (32,132), (33,133), (34,134), (35,135), (36,136), (37,137), (38,138), (39,139), (40,140), (41,141), (42,142), (43,143), (44,144), (45,145), (46,146), (47,147), (48,148), (49,149), (50,150), (51,151), (52,152), (53,153), (54,154), (55,155), (56,156), (57,157), (58,158), (59,159), (60,160), (61,161), (62,162), (63,163), (64,164), (65,165), (66,166), (67,167), (68,168), (69,169), (70,170), (71,171), (72,172), (73,173), (74,174), (75,175), (76,176), (77,177), (78,...

val a = sc.parallelize(1 to 100, 3)

val b = sc.parallelize(101 to 200, 3)

val c = sc.parallelize(201 to 300, 3)

a.zip(b).zip(c).map((x) => (x._1._1, x._1._2, x._2 )).collect

res12: Array[(Int, Int, Int)] = Array((1,101,201), (2,102,202), (3,103,203), (4,104,204), (5,105,205), (6,106,206), (7,107,207), (8,108,208), (9,109,209), (10,110,210), (11,111,211), (12,112,212), (13,113,213), (14,114,214), (15,115,215), (16,116,216), (17,117,217), (18,118,218), (19,119,219), (20,120,220), (21,121,221), (22,122,222), (23,123,223), (24,124,224), (25,125,225), (26,126,226), (27,127,227), (28,128,228), (29,129,229), (30,130,230), (31,131,231), (32,132,232), (33,133,233), (34,134,234), (35,135,235), (36,136,236), (37,137,237), (38,138,238), (39,139,239), (40,140,240), (41,141,241), (42,142,242), (43,143,243), (44,144,244), (45,145,245), (46,146,246), (47,147,247), (48,148,248), (49,149,249), (50,150,250), (51,151,251), (52,152,252), (53,153,253), (54,154,254), (55,155,255)...

64.zipPartitions

val a = sc.parallelize(0 to 9, 3)

val b = sc.parallelize(10 to 19, 3)

val c = sc.parallelize(100 to 109, 3)

def myfunc(aiter: Iterator[Int], biter: Iterator[Int], citer: Iterator[Int]): Iterator[String] =

{

var res = List[String]()

while (aiter.hasNext && biter.hasNext && citer.hasNext)

{

val x = aiter.next + " " + biter.next + " " + citer.next

res ::= x

}

res.iterator

}

a.zipPartitions(b, c)(myfunc).collect

res50: Array[String] = Array(2 12 102, 1 11 101, 0 10 100, 5 15 105, 4 14 104, 3 13 103, 9 19 109, 8 18 108, 7 17 107, 6 16 106)

65.zipWithIndex

val z = sc.parallelize(Array("A", "B", "C", "D"))

val r = z.zipWithIndex

res110: Array[(String, Long)] = Array((A,0), (B,1), (C,2), (D,3))

val z = sc.parallelize(100 to 120, 5)

val r = z.zipWithIndex

r.collect

res11: Array[(Int, Long)] = Array((100,0), (101,1), (102,2), (103,3), (104,4), (105,5), (106,6), (107,7), (108,8), (109,9), (110,10), (111,11), (112,12), (113,13), (114,14), (115,15), (116,16), (117,17), (118,18), (119,19), (120,20))

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容

  • 其实很早之前就想对spark做一下自己的阐述,一直也无奈于不能系统的进行以下自己的解释,现在还是想粗略的说一下我自...
    笙歌如榆阅读 3,246评论 0 2
  • 1、RDD RDD(Resilient Distributed Dataset弹性分布式数据集)是Spark中抽象...
    青禾ws阅读 643评论 2 3
  • http://spark.apache.org/docs/latest/api/python/index.html...
    mpro阅读 6,090评论 0 4
  • 常用Transformation(即转换,延迟加载) 通过并行化scala集合创建RDD val rdd1 = s...
    Albert陈凯阅读 484评论 0 0
  • pyspark.sql模块 模块上下文 Spark SQL和DataFrames的重要类: pyspark.sql...
    mpro阅读 9,448评论 0 13