Golang微服务框架Kratos应用分布式计划任务队列Asynq

Golang微服务框架Kratos应用分布式计划任务队列Asynq

任务队列(Task Queue) 一般用于跨线程或跨计算机分配工作的一种机制。其本质是生产者消费者模型,生产者发送任务到消息队列,消费者负责处理任务。

任务队列的输入是称为任务(Task)的工作单元。专用的工作进程不断监视任务队列以查找要执行的新工作。

在Golang语言里面,我们有像AsynqMachinery这样的类似于Celery的分布式任务队列。

什么是任务队列

消息队列(Message Queue),一般来说知道的人不少。比如常见的:kafka、Rabbitmq、RocketMQ等。

任务队列(Task Queue),听说过这个概念的人不会太多,清楚它的概念的人怕是更少。

这两个概念是有关系的,他们是怎样的关系呢?任务队列(Task Queue)是消息队列(Message Queue)的超集。任务队列是构建在消息队列之上的。消息队列是任务队列的一部分。

提起分布式任务队列(Distributed Task Queue),就不得不提PythonCelery。故而,下面我们来看Celery的架构图,以此来讲解。其他的任务队列也并不会与之有太大的差异性,基础的原理是一致的。

Celery 的架构中,由多台 Server 发起异步任务(Async Task),发送任务到 Broker 的队列中,其中的 Celery Beat 进程可负责发起定时任务。当 Task 到达 Broker 后,会将其分发给相应的 Celery Worker 进行处理。当 Task 处理完成后,其结果存储至 Backend

在上述过程中的 BrokerBackendCelery 并没有去实现,而是使用了已有的开源实现,例如 RabbitMQ 作为 Broker 提供消息队列服务,Redis 作为 Backend 提供结果存储服务。Celery 就像是抽象了消息队列架构中 ProducerConsumer 的实现,将消息队列中基本单位“消息”抽象成了任务队列中的“任务”,并将异步、定时任务的发起和结果存储等操作进行了封装,让开发者可以忽略 AMQP、RabbitMQ 等实现细节,为开发带来便利。

综上所述,Celery 作为任务队列是基于消息队列的进一步封装,其实现依赖消息队列。

任务队列的应用场景

我们现在知道了任务队列是什么,也知道了它的工作原理。但是,我们并不知道它可以用来做什么。下面,我们就来看看,它到底用在什么样的场景下。

  1. 分布式任务:可以将任务分发到多个工作者进程或机器上执行,以提高任务处理速度。
  2. 定时任务:可以在指定时间执行任务。例如:每天定时备份数据、日志归档、心跳测试、运维巡检。支持 crontab 定时模式
  3. 后台任务:可以在后台执行耗时任务,例如图像处理、数据分析等,不影响用户界面的响应。
  4. 解耦任务:可以将任务与主程序解耦,以提高代码的可读性和可维护性,解耦应用程序最直接的好处就是可扩展性和并发性能的提高。支持并发执行任务,同时支持自动动态扩展。
  5. 实时处理:可以支持实时处理任务,例如即时通讯、消息队列等。

Asynq概述

Asynq是一个使用Go语言实现的分布式任务队列和异步处理库,它由Redis提供支持,它提供了轻量级的、易于使用的API,并且具有高可扩展性和高可定制化性。其作者Ken Hibino,任职于Google。

Asynq主要由以下几个组件组成:

  • 任务(Task):需要被异步执行的操作;
  • 处理器(Processor):负责执行任务的工作进程;
  • 队列(Queue):存放待执行任务的队列;
  • 调度器(Scheduler):根据规则将任务分配给不同的处理器进行执行。

通过使用Asynq,我们可以非常轻松的实现异步任务处理,同时还可以提供高效率、高可扩展性和高自定义性的处理方案。

Asynq的特点

  • 保证至少执行一次任务
  • 任务写入Redis后可以持久化
  • 任务失败之后,会自动重试
  • worker崩溃自动恢复
  • 可是实现任务的优先级
  • 任务可以进行编排
  • 任务可以设定执行时间或者最长可执行的时间
  • 支持中间件
  • 可以使用 unique-option 来避免任务重复执行,实现唯一性
  • 支持 Redis Cluster 和 Redis Sentinels 以达成高可用性
  • 作者提供了Web UI & CLI Tool让大家查看任务的执行情况

Asynq可视化监控

Asynq提供了两种监控手段:CLI和Web UI。

命令行工具CLI

go install github.com/hibiken/asynq/tools/asynq@latest

Web UI

Asynqmon是一个基于Web的工具,用于监视管理Asynq的任务和队列,有关详细的信息可以参阅工具的README。

Web UI我们可以通过Docker的方式来进行安装:

docker pull hibiken/asynqmon:latest

docker run -d \
    --name asynq \
    -p 8080:8080 \
    hibiken/asynqmon:latest --redis-addr=host.docker.internal:6379

安装好Web UI之后,我们就可以打开浏览器访问管理后台了:http://localhost:8080

  • 仪表盘
  • 任务视图
  • 性能

Kratos下如何应用Asynq?

我们将分布式任务队列以transport.Server的形式整合进微服务框架Kratos

目前,go里面有两个分布式任务队列可用:

我已经对这两个库进行了支持:

Docker部署依赖组件

因为它依赖Redis,因此,我们使用Docker的方式安装Redis的服务器:

docker pull bitnami/redis:latest

docker run -itd \
    --name redis-test \
    -p 6379:6379 \
    -e ALLOW_EMPTY_PASSWORD=yes \
    bitnami/redis:latest

安装依赖库

我们需要在项目中安装Asynq的依赖库:

go get -u github.com/tx7do/kratos-transport/transport/asynq

创建Kratos服务端

我们在代码当中引入库,并且创建出来Server

首先,我们要创建Server

package server

import (
    ...
    "github.com/tx7do/kratos-transport/transport/asynq"
)

// NewAsynqServer create a asynq server.
func NewAsynqServer(cfg *conf.Bootstrap, _ log.Logger, svc *service.TaskService) *machinery.Server {
    ctx := context.Background()

    srv := asynq.NewServer(
        asynq.WithAddress(cfg.Server.Asynq.Broker),
    )

    registerAsynqTasks(ctx, srv, svc)

    return srv
}

注册任务回调

然后,把回调函数注册进服务器:

const (
    testTask1        = "test_task_1"
    testDelayTask    = "test_delay_task"
    testPeriodicTask = "test_periodic_task"
)

type TaskPayload struct {
    Message string `json:"message"`
}

func registerAsynqTasks(ctx context.Context, srv *asynq.Server, svc *service.TaskService) {
    var err error
    err = asynq.RegisterSubscriber(srv, testTask1, svc.HandleTask1)
    err = asynq.RegisterSubscriber(srv, testDelayTask, svc.HandleDelayTask)
    err = asynq.RegisterSubscriber(srv, testPeriodicTask, svc.HandlePeriodicTask)
}

Asynq服务器注册到Kratos

接着,调用kratos.Server把Asynq服务器注册到Kratos里去:

func newApp(ll log.Logger, rr registry.Registrar, ks *asynq.Server) *kratos.App {
    return kratos.New(
        kratos.ID(Service.GetInstanceId()),
        kratos.Name(Service.Name),
        kratos.Version(Service.Version),
        kratos.Metadata(Service.Metadata),
        kratos.Logger(ll),
        kratos.Server(
            ks,
        ),
        kratos.Registrar(rr),
    )
}

实现任务回调方法

最后,我们就可以在Service里愉快的玩耍了:

package service

type TaskService struct {
    log          *log.Helper
}

func NewTaskService(
    logger log.Logger,
) *TaskService {
    l := log.NewHelper(log.With(logger, "module", "task/service/logger-service"))
    return &TaskService{
        log:          l,
        statusRepo:   statusRepo,
        realtimeRepo: realtimeRepo,
    }
}

func (s *TaskService) HandleTask1() error {
    fmt.Println("################ 执行任务Task1 #################")
    return nil
}

func (s *TaskService) HandleTask1(taskType string, taskData *TaskPayload) error {
    s.log.Infof("[%s] Task Type: [%s], Payload: [%s]", time.Now().Format("2006-01-02 15:04:05"), taskType, taskData.Message)
    return nil
}

func (s *TaskService) HandleDelayTask(taskType string, taskData *TaskPayload) error {
    s.log.Infof("[%s] Delay Task Type: [%s], Payload: [%s]", time.Now().Format("2006-01-02 15:04:05"), taskType, taskData.Message)
    return nil
}

func (s *TaskService) HandlePeriodicTask(taskType string, taskData *TaskPayload) error {
    s.log.Infof("[%s] Periodic Task Type: [%s], Payload: [%s]", time.Now().Format("2006-01-02 15:04:05"), taskType, taskData.Message)
    return nil
}

创建新任务

新建任务,有两个方法:NewTaskNewPeriodicTask,内部分别对应着asynq.Clientasynq.Scheduler

NewTask是通过asynq.Client将任务直接入了队列。

普通任务

普通任务通常是入列后立即执行的(如果不需要排队的),下面就是最简单的任务,一个类型(Type),一个负载数据(Payload)就构成了一个最简单的任务:

err = srv.NewTask(testTask1, 
    &DelayTask{Message: "delay task"},
)

当然,你也可以添加一些的参数,比如重试次数、超时时间、过期时间等……

// 最多重试3次,10秒超时,20秒后过期
err = srv.NewTask(testTask1, 
    &DelayTask{Message: "delay task"},
    asynq.MaxRetry(10),
    asynq.Timeout(10*time.Second),
    asynq.Deadline(time.Now().Add(20*time.Second)),
)

延迟任务(Delay Task)

延迟任务,顾名思义,也就是推迟到指定时间执行的任务,我们可以有两个参数可以注入:ProcessAtProcessIn

ProcessIn指的是从现在开始推迟多少时间执行:

// 3秒后执行
err = srv.NewTask(testDelayTask,
    &DelayTask{Message: "delay task"},
    asynq.ProcessIn(3*time.Second),
)

ProcessAt指的是在指定的某一个具体时间执行:

// 1小时后的时间点执行
oneHourLater := now.Add(time.Hour)
err = srv.NewTask(testDelayTask,
    &DelayTask{Message: "delay task"},
    asynq.ProcessAt(oneHourLater),
)

周期性任务(Periodic Task)

周期性任务asynq.Scheduler内部是通过Crontab来实现定时的,定时器到点之后,就调度任务。它默认使用的是UTC时区。

// 每分钟执行一次
_, err = srv.NewPeriodicTask(
    "*/1 * * * ?",
    testPeriodicTask,
    &DelayTask{Message: "periodic task"},
)

需要注意的是,若要保证周期性任务的持续调度执行,asynq.Scheduler必须要一直运行着,否则调度将不会发生。调度器本身不参与任务的执行,但是没有它的存在,调度将不不复存在,也不会发生。

示例代码

示例代码可以在单元测试代码中找到:https://github.com/tx7do/kratos-transport/tree/main/transport/asynq/server_test.go

参考资料

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容