大数据,人工智能背后的基石

       半个多世纪的某个夏天,麦卡锡、明斯基等科学家们共同研究用机器模拟智能的问题,人工智能,也就是AI的概念被正式提出。如今人工智能的商业化正在快速发展,例如我们熟知的人像识别、图像识别、语音识别、自然语言处理、用户画像等等。对于未来而言,人工智能会在生活的方方面面发挥更多的作用。但是没有先前的大数据技术做铺垫,也不会有今天大红大紫的人工智能。

       大数据可以说是人工智能的基石,目前的深度学习主要就是建立在大数据的基础上的。

        人工智能主要有三个分支:

        1.基于规则的人工智能。

        2.无规则,计算机读取大量数据,根据数据的统计、概率分析等方法,进行智能处理的人工智能。

        3.基于神经元网络的一种深度学习。 

       基于规则的人工智能,即在计算机内根据规定的语法结构录入规则,用这些规则进行智能处理,缺乏灵活性,也不适合实用化。因此人工智能实际上的主流分支是后两者。

       而后两者都是通过“计算机读取大量数据,提升人工智能本身的能力和精准度”。如今,大量数据产生之后,有低成本的存储器将其存储,有高速的CPU对其进行处理,所以才使得人工智能后两个分支的理论得以实践。

       简单来说什么是大数据呢。从字面上来看,大数据被很多人定义成“大规模的数据”,但其实这个说法并不够准确。数据量庞大,并不代表着数据一定有可以被深度学习算法利用的价值。举个例子,地球公转的过程中,每秒记录一次地球相对太阳的运动速度、位置,可以得到大量的数据,但只是这样的数据,它的挖掘价值并不是特别高。

       大数据这里我们参阅马丁·希尔伯特的总结,今天我们常说的大数据其实是在2000年后,因为信息交换、信息存储、信息处理三个方面能力的大幅增长而产生的数据:

信息交换:据估算,从1986年到2007年这20年间,地球上每天可以通过既有信息通道交换的信息数量增长了约217倍,这些信息的数字化程度,则从1986年的约20%增长到2007年的约99.9%。在数字化信息爆炸式增长的过程里,每个参与信息交换的节点都可以在短时间内接收并存储大量数据。

信息存储:全球信息存储能力大约每3年翻一番。从1986年到2007年这20年间,全球信息存储能力增加了约120倍,所存储信息的数字化程度也从1986年的约1%增长到2007年的约94%。1986年时,即便用上我们所有的信息载体、存储手段,我们也不过能存储全世界所交换信息的大约1%,而2007年这个数字已经增长到大约16%。信息存储能力的增加为我们利用大数据提供了近乎无限的想象空间。

信息处理:有了海量的信息获取能力和信息存储能力,我们也必须有对这些信息进行整理、加工和分析的能力。谷歌、Facebook等公司在数据量逐渐增大的同时,也相应建立了灵活、强大的分布式数据处理集群。

       大数据在应用层面来说,往往可以取代传统意义上的抽样调查。大数据可以实时获取、往往混合了来自多个数据源的多维度信息,大数据的价值在于数据分析以及分析基础上的数据挖掘和智能决策。人工智能的发展离不开海量数据进行训练,究其根本,正是有了大数据的无数次训练和深度学习,才有了人工+智能。

       想要了解更多大数据和人工智能的知识,欢迎关注科多大数据。更多更新的行业资讯,我们与你分享。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 224,983评论 6 522
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 96,354评论 3 403
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 172,216评论 0 367
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 61,061评论 1 300
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 70,073评论 6 400
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 53,541评论 1 314
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 41,906评论 3 428
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 40,881评论 0 279
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 47,428评论 1 324
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 39,460评论 3 346
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 41,578评论 1 355
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 37,176评论 5 351
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 42,913评论 3 339
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 33,348评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 34,490评论 1 277
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 50,142评论 3 381
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 46,650评论 2 366

推荐阅读更多精彩内容