【ES从入门到实战】十七、全文检索-ElasticSearch-进阶-aggregations聚合分析

接第16节

9) 、aggregations (执行聚合)

聚合提供了从数据中分组和提取数据的能力。
最简单的聚合方法大致等于 SQL GROUP BYSQL 聚合函数
在 Elasticsearch 中,您有执行搜索返回 hits (命中结果),并且同时返回聚合结果,
把一个响应中的所有hits(命中结果)分隔开的能力。这是非常强大且有效的,您可以执行查询和多个聚合,
并且在一次使用中得到各自的(任何一个的)返回结果,使用一次简洁和简化的 API 来避免网络往返。

aggregations 查询语法:

"aggregations" : {
    "<aggregation_name>" : {
        "<aggregation_type>" : {
            <aggregation_body>
        }
        [,"meta" : {  [<meta_data_body>] } ]?
        [,"aggregations" : { [<sub_aggregation>]+ } ]?
    }
    [,"<aggregation_name_2>" : { ... } ]*
}

举个栗子:

  • 搜索address中包含mill的所有人的年龄分布以及平均年龄,但不显示这些人的详情。
GET /bank/_search
{
  "query": { //查询
    "match": {
      "address": "mill"
    }
  },
  "aggs": { //聚合
    "ageAgg": { //年龄分布
      "terms": {
        "field": "age",
        "size": 10 //只取10中聚合的结果
      }
    },
    "ageAvg":{//平均年龄,基于上一次的结果
      "avg": {
        "field": "age"
      }
    },
    "balanceAvg":{//平均薪资
      "avg": {
        "field": "balance"
      }
    }
  },
  "size": 0 //不显示搜索数据,只显示聚合结果
}
在这里插入图片描述
aggs,执行聚合。聚合语法如下:
"aggs":{
    "ages_name 这次聚合的名字,方便展示在结果集中":{
        "AGG-TYPE 聚合的类型(avg,term,terms) ":{}
    }
}
  • 复杂聚合:按照年龄聚合,并且请求这些年龄段的这些人的平均薪资(使用一个子聚合)
GET /bank/_search
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "ageAgg": {
      "terms": {//年龄范围分布聚合
        "field": "age",
        "size": 100//返回100中情况
      },
      "aggs": {//基于ageAgg的结果做聚合
        "ageAvg": {
          "avg": {//求balance的平均值
            "field": "balance"
          }
        }
      }
    }
  }
}
在这里插入图片描述
  • 复杂聚合进阶:查出所有年龄分布,并且这些年龄段中M的平均薪资和F的平均薪资以及这个年龄段的总体平均新资
GET /bank/_search
{
  "query": {
    "match_all": {}
  },
  "aggs": {//聚合
    "ageAgg":{
      "terms": {//年龄分布
        "field": "age",
        "size": 100
      },
      "aggs": {//基于ageAgg做聚合
        "genderAgg": {//性别分布
          "terms": {
            //文本字段聚合使用keyword进行精确匹配,否则会报错
            "field": "gender.keyword",
            "size": 10
          },
          "aggs": {//基于genderAgg做聚合
            "balanceAvg": {//求性别为M和F的各自的平均薪资
              "avg": {
                "field": "balance"
              }
            }
          }
        },
        "ageBalanceAvg":{//基于ageAgg,求各个年龄段的平均薪资
          "avg": {
            "field": "balance"
          }
        }
      }
    }
  }
}
在这里插入图片描述

更多聚合查询操作,请参考 ES 官方文档:参考文档-search-aggregations

参考文档-query-dsl


参考:

Elasticsearch Reference

elastic

全文搜索引擎 Elasticsearch 入门教程

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,133评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,682评论 3 390
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,784评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,508评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,603评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,607评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,604评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,359评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,805评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,121评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,280评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,959评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,588评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,206评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,193评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,144评论 2 352