基于xgboost的波士顿房价预测kaggle实战

xgboost中文叫做极致梯度提升模型,官方文档链接:https://xgboost.readthedocs.io/en/latest/tutorials/model.html

2018年8月24日笔记
这是作者在波士顿房价预测项目的第3篇文章,在查看此篇文章之前,请确保已经阅读前2篇文章。
第2篇文章链接:https://www.jianshu.com/p/f34f22258a0a

0.打开jupyter notebook

不知道怎么打开jupyter notebook的朋友请查看我的入门指南文章:https://www.jianshu.com/p/bb0812a70246

1.准备数据

kaggle网站波士顿房价项目链接:https://www.kaggle.com/c/boston-housing
网页内容如下图所示:

image.png

查看项目评分标准,如下图所示:


image.png

从上图我们可以看出,该项目使用RMSE指标评估。
RMSE是root mean square error的简写,中文叫做均方根误差。
上图中的公式有错误,正确应该如下图所示:


image.png

2.作者的最高分

波士顿房价预测项目是2016年的项目,现在已经结束。
所以读者可以先熟悉提交答案的流程,作者提供自己的最高分文件。
提交文件下载链接: https://pan.baidu.com/s/1DxSEuysjOLCVuNlnw41-oQ 密码: b8jm
提交结果如下图所示:

image.png

从上图的结果可以看到,作者的最高分有3.02分,可以排到第5名。
后面的章节讲述提升模型回归效果,即降低RMSE的过程。

3.下载数据集

如下图所示,下载红色箭头标示的3个文件。
下载完成后,就可以开始编程。


image.png

4.加载数据集

train.csv文件中的表格有15个字段,第1个字段是ID,最后1个字段是预测目标值。
用df.iloc[:,1:-1]取除了第1个字段和最后1个字段的其他字段。

import pandas as pd

def dataProcessing(df):
    field_cut = {
    'crim' : [0,10,20, 100],
    'zn' : [-1, 5, 18, 20, 40, 80, 86, 100], 
    'indus' : [-1, 7, 15, 23, 40],
    'nox' : [0, 0.51, 0.6, 0.7, 0.8, 1],
    'rm' : [0, 4, 5, 6, 7, 8, 9],
    'age' : [0, 60, 80, 100],
    'dis' : [0, 2, 6, 14],
    'rad' : [0, 5, 10, 25],
    'tax' : [0, 200, 400, 500, 800],
    'ptratio' : [0, 14, 20, 23],
    'black' : [0, 100, 350, 450],
    'lstat' : [0, 5, 10, 20, 40]
    }
    cut_df = pd.DataFrame()
    for field in field_cut.keys():
        cut_series = pd.cut(df[field], field_cut[field], right=True)
        onehot_df = pd.get_dummies(cut_series, prefix=field)
        cut_df = pd.concat([cut_df, onehot_df], axis=1)
    new_df = pd.concat([df, cut_df], axis=1)
    return new_df

df = pd.read_csv('train.csv')
field_df = df.iloc[:,1:-1]
feature_df = dataProcessing(field_df)

根据网上的资料显示,有部分异常值的预测目标值为50。
清除异常值,代码如下:

X = feature_df
y = df['medv'].values
print(X.shape)
X = X[y!=50]
y = y[y!=50]
print(X.shape)

上面一段代码的运行结果如下:

(333, 61)
(322, 61)

5.模型训练

from xgboost import XGBRegressor
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import ShuffleSplit


xgb_model = XGBRegressor(nthread=7)
cv_split = ShuffleSplit(n_splits=6, train_size=0.7, test_size=0.2)
grid_params = dict(
    max_depth = [4, 5, 6, 7],
    learning_rate = np.linspace(0.03, 0.3, 10),
    n_estimators = [100, 200]
)
grid = GridSearchCV(xgb_model, grid_params, cv=cv_split, scoring='neg_mean_squared_error')
grid.fit(X, y)

查看模型的最优参数和最优rmse指标,代码如下:

print(grid_model.best_params_)
print('rmse:', (-grid_model.best_score_) ** 0.5)

上面一段代码的运行结果如下:

{'learning_rate': 0.03, 'max_depth': 6, 'n_estimators': 200}
rmse: 2.885408101511587

利用训练好的结果,对测试集做回归预测,代码如下:

predict_df = pd.read_csv('test.csv')
predict_X = dataProcessing(predict_df.iloc[:,1:]).values
predict_y = grid_model.predict(predict_X)
save_df = pd.DataFrame({
    'ID' : predict_df.ID,
    'medv' : predict_y
})
save_df.to_csv('xgb_boston_submission1.csv', index=False)

6.提交作答文件

点击下图红色箭头标示处,界面如下图所示。
分为2步:1.上传作答文件;2.对此次作答做简单的描述。

image.png

作者的作答文件命名为xgb_boston_submission1.csv,如下图所示。
重新运行的提交分数为3.10,分数略有下降,但是仍能进入前5。
image.png

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容