大数据风险管理:


大数据作为21世纪的“钻石矿”,对于互金行业的重要性已经不言而喻,大数据技术在风险控制领域的应用非常广泛。很多人可能会认为:只要数据量“大”,数据维度“多”,就会有最强大的风控体系和行业最低的坏账率。而事实上,做大数据风险控制是一件非常细致的事情,拥有数据并不意味着拥有一切,重要的不单是数据本身,分析、处理和应用这些数据才更有价值的。

传统的信贷风险控制模型里,贷前、贷中、贷后,三个过程中,贷前是审查中最具价值的,而对贷中、贷后环节的重视程度相对较低。而大数据除了可以帮助互联网金融企业做好传统的贷前审核,还可以通过大数据技术,对数据维度和数据特征进行充分的处理,在贷中、贷后环节更具深度更具广度地做好风险控制。

例如,金融机构使用大数据来监控某一地区的企业经营状况。如果在一段时间内出现异常,该机构将派人调查原因,这个方法是常见的传统风控方法。但是大数据的便利,除了减少劳动力成本,更重要的是,通过大数据多维度的交叉核验,行为数据异常分析,可以发掘更多的判断依据,然后监测预警。

智眼现金贷系统搭载的AI大数据智能风控通过机器学习及人工智能处理技术,采用最前沿的建模算法等,将识别异常交易的速度缩短到‘亚秒’级,可以在欺诈交易发生同时就能够做出判断,直接拦截异常交易。

大数据可以给出结论,但给不了解释,只有把数据通过可视化效果呈现出来,并对其进行分析,才能找出真正的答案。我们面对复杂的数据问题时,首先把数据关联起来,再利用人工智能、机器学习等各种算法,从数据的视角洞察消费生活的方方面面,打造精准合理的数据分析结果。

机器学习是人工智能的核心能力之一,作为一个人工智能系统,惊蛰智能风控引擎拥有极强的机器学习能力,可以随着用户行为对应人数的增加,不断调整策略,持续迭代模型,定期进行优化调整。因此,做好大数据风险控制是一件非常细致的事情。它的秘密不在于数据本身,而在于对数据的理解分析,这个就非常需要专业人士处理,不是一个软件开发程序员,一个金融专业的人能解决的,需要综合性人才,对金融,互联网,企业管理和法律会计知等比较了解,一定要有实操风控经验,至少7年以上。

1,为什么需要大数据做风控:因为小贷公司无法上传人行征信,也无法查询人行征信,只能通过其他数据辅助判断。

2,定义“欺诈”的概念,然后做反欺诈。欺诈每个公司定义不一样,当然后续的反欺诈措施就不一样的。我个人认为的欺诈有以下几个方面:1,身份欺诈,就不是本人申请的,冒用别人身份申请的。2,不管他有没有还款能力,但是没有还款意愿的群体,说白了就是那些撸贷专业户,他们有些人可能很有钱但就是不还。因为不上人行征信,所以有些人敢不还。

剩余的群体就包含了有还款意愿也有还款能力的正常群体和有还款意愿但没还款能力的群体。

3,风控要做什么:

我认为风控主要做反欺诈即可,也就是把控好上述欺诈定义里的两点,第一点是比较容易的一点,这里就不多说了,技术比较成熟了。但是第二点就很难去把控。

所以互联网小贷公司会找一些大数据公司通过各种技术和渠道获取到很多很多信息,例如你的公积金,社保,电商,网上行为轨迹,火车航班记录,学信网,其他贷款记录(多头记录),通话记录,通话详单,通讯录,甚至短信(现在已经获取不到了)等等,几乎你能想到的个人隐私他们都能想办法得到。但是,这么花里胡哨,有用么?

很多申请人会伪装,就像有些人面试的时候很牛逼,真正一到公司里却连试用期都过不了就被淘汰了,这就是因为他在面试的时候伪装了,或许夸大了自己能力,也可能虚构了自己的经验等等。贷款申请人也一样,专业的撸贷人经过多次申请测试,基本能探清楚你设置的一些拦截规则,也知道你们小贷公司想给哪些人群放贷,他们就针对性的去伪装。这就是为什么有些公司明明使用了很多大数据,并且将一些有用的字段入了模,KS还挺高,但最后不良率还是那么高的一个原因。

而且,现在谁还没有支付宝和微信账号?真正有借款需求,有还款意愿的好人,基本都很在乎借款利率的高低,他们第一选择都是借呗和微粒贷(银行或信用卡的现金贷这里就不说了),而被借呗和微粒贷淘汰的人群才会流入普通小贷。

南方航空的大数据管理,一些平台公司的大数据管理都是有缺陷的,做大数据的人,也没有专业的法律和金融常识,就进入这个领域负责风险管理,水平有限,当然和这个公司收入来源有直接的关系,企业主要盈利是接受外包数据。

一家企业的风险管理是否健全,主要看这个公司对财务和法律的重视以及管理这个法务部财务部或者合规部风险管理部门的负责人的水平和公司的执行董事的能力。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,884评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,347评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,435评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,509评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,611评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,837评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,987评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,730评论 0 267
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,194评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,525评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,664评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,334评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,944评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,764评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,997评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,389评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,554评论 2 349