关于AIOps智能运维,你必须知道这些事!

人工智能和机器学习技术的发展,推动大量依赖人脑决策和手工操作的IT 运维向着AIOps智能运维的方向快速前进。特别是当机器学习算法与基于大数据的业务运维管理平台整合,在告警过滤、异常监测、自动修复等环节发挥效用,就能把CIO和IT部门从繁复耗时、容易出错的基础运维工作中彻底解放出来,专注于更有价值的业务运维。

过去需要花费数个小时、数天甚至数周才能完成的故障诊断和修复工作,AIOps智能运维平台可能只需要几秒钟就能搞定,而且更加精准、更少误判。AIOps的问世不仅得益于人工智能技术的发展,同时也是企业数字化转型的必然结果,企业的数字化程度越高,IT规模越大也越复杂,就越需要快捷、高效、精准的运维管理平台作为业务的有效支撑。

AIOps的来历

对于传统企业来说,AIOps并不是一个全新的理念,而是IT运营分析和管理(ITOA/ITOM)体系与大数据和人工智能技术结合的产物。AIOps智能运维以ITOA/ITOM系统所采集的运维大数据为基础,利用人工智能和机器学习算法对运维数据进行深入分析,涵盖IT监控,应用性能管理、外网监控、日志分析,系统安全等方面。

市面上流行的传统运维管理平台,其核心组件缺少大数据采集、分析和本地机器学习的能力,需要业务运维和AIOps平台予以完善。AIOps智能运维平台能够接入不同业务系统、监控系统、管理系统的海量IT数据,并运用各种算法进行高速分析、学习甚至预测。立足于AIOps,IT部门可以获得强大的自动化IT决策和运营管理能力,并能对业务质量和用户体验进行准确检测和持续优化。

AIOps的价值

“AIOps正在广泛应用于IT大数据和业务大数据分析领域,为企业提供极具价值的业务洞察能力”。据Gartner分析师最新预测,到了2022年,部署AIOps平台的大型企业数量将从如今的不足5%,迅速提升到40%左右,而这些企业会把AIOps用于业务运营和IT运维,以取代如今的运维监控、管理工具和自动化运维产品。

当企业的数字化程度越来越高, IT系统的复杂度和规模越来越大,摆在CIO面前的这道双选题:是不断增加业务流程?还是采用AIO平台?似乎不难抉择!

AIOps的组成结构

Gartner定义的AIOps平台拥有11项能力,包括历史数据管理(Historical data management)、流数据管理(Streaming data management)、日志数据提取(Log data ingestion)、网络数据提取(Wire data ingestion)、算法数据提取(Metric data ingestion)、文本和NLP文档提取(Document text ingestion)、自动化模型的发现和预测(Automated pattern discovery and prediction)、异常检测(Anomaly detection)、根因分析(Root cause determination)、按需交付(On-premises delivery)和软件服务交付(Software as a service)等。

云智慧智能业务运维大数据平台,将前9项能力分别纳入数据接入层、大数据管理层、大数据分析层、应用模块层和可视化展现层这五层逻辑架构中,便于企业和CIO们更好的理解和落地AIOps理念和相关解决方案。

数据接入层:通过开放的API接口,广泛接入企业IT系统的历史数据、流数据、日志数据、网络数据、算法数据、文本和NLP文档数据,以及APP数据、浏览器数据、业务系统运营指标数据等不同数据源的数据。

大数据管理层:对业务系统和IT支撑系统产生的结构化和非结构化数据进行统一、高效的存储、管理和调度。

大数据分析层:聚合数据建模、大数据分析能力,实现业务和IT数据的关联分析,通过人工智能对业务波动、故障判断、修复操作等依靠人力决策的环节进行持续学习和自动化响应。

应用模块层:针对基础设施、应用和业务系统之间的逻辑拓扑,提供覆盖全部技术栈的基础设施监控、应用性能管理、业务决策分析以及异常检测、根因分析和统一告警服务。

可视化展现层:以可视化大屏或页面的形式实时展现业务系统运行状态、IT资源利用率等智能运维的关键指标,第一时间发现IT对业务的影响,辅助商业决策。

AIOps是IT走向运营的点金手

未来几年,数字化系统的运行效能对企业核心竞争力的影响越来越大,CIO所领导的IT部门在运营中所扮演的角色也越来越重要。然而,随着系统规模和复杂度呈指数级增长, IT人员解决问题的能力不会有太大的变化。要让IT摆脱传统运维工作的束缚,就需要运用AIOps智能运维平台来有效承担基础运维的种种责任。

在AIOps的帮助之下,IT人员可以从繁琐的常规工作中得到彻底的释放,专注于对企业发展更有价值的工作 – 业务和用户体验,让IT真正走向运营。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,711评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,079评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,194评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,089评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,197评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,306评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,338评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,119评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,541评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,846评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,014评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,694评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,322评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,026评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,257评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,863评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,895评论 2 351

推荐阅读更多精彩内容