Dual Attention Network for Scene Segmentation

这是一篇arXiv上的文章,也是关于注意力机制的工作,不过是在图像分割使用通道注意力机制。
paper

这是一篇使用两种注意力机制的文章:

  1. 通道注意力机制
    文中提到通道其实在分类时会起到不同作用,而使用通道注意力机制可以挖掘不用之间的相互依赖性

  2. 空间注意力机制
    空间注意力机制就是使模型更加关注图像中实体区域的贡献,减弱背景的影响。

主干网络以dilated FCN为主要结构:
在网络上使用如下两个注意力机制:

发现有大神进行了PPT讲解

一下类容来自冯爽朗

以上内容都是截图。。。主要是为了偷懒。。。

源码:github
本人比较关注注意力机制。。。
在源码的encoding/nn/attention.py中发现注意力机制模块:

如下:

class PAM_Module(Module):
    """ Position attention module"""
    #Ref from SAGAN
    def __init__(self, in_dim):
        super(PAM_Module, self).__init__()
        self.chanel_in = in_dim

        self.query_conv = Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)
        self.key_conv = Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)
        self.value_conv = Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1)
        self.gamma = Parameter(torch.zeros(1))

        self.softmax = Softmax(dim=-1)
    def forward(self, x):
        """
            inputs :
                x : input feature maps( B X C X H X W)
            returns :
                out : attention value + input feature
                attention: B X (HxW) X (HxW)
        """
        m_batchsize, C, height, width = x.size()
        proj_query = self.query_conv(x).view(m_batchsize, -1, width*height).permute(0, 2, 1) # reshape  to (m_batchsize, width*height, c)
        proj_key = self.key_conv(x).view(m_batchsize, -1, width*height)
        energy = torch.bmm(proj_query, proj_key) # 矩阵乘法
        attention = self.softmax(energy) # 添加非线性函数
        proj_value = self.value_conv(x).view(m_batchsize, -1, width*height)

        out = torch.bmm(proj_value, attention.permute(0, 2, 1))
        out = out.view(m_batchsize, C, height, width) # reshape到原图

        out = self.gamma*out + x # 相加
        return out


class CAM_Module(Module):
    """ Channel attention module"""
    def __init__(self, in_dim):
        super(CAM_Module, self).__init__()
        self.chanel_in = in_dim


        self.gamma = Parameter(torch.zeros(1))
        self.softmax  = Softmax(dim=-1)
    def forward(self,x):
        """
            inputs :
                x : input feature maps( B X C X H X W)
            returns :
                out : attention value + input feature
                attention: B X C X C
        """
        m_batchsize, C, height, width = x.size()
        proj_query = x.view(m_batchsize, C, -1)
        proj_key = x.view(m_batchsize, C, -1).permute(0, 2, 1)
        energy = torch.bmm(proj_query, proj_key)
        energy_new = torch.max(energy, -1, keepdim=True)[0].expand_as(energy)-energy
        attention = self.softmax(energy_new)
        proj_value = x.view(m_batchsize, C, -1)

        out = torch.bmm(attention, proj_value)
        out = out.view(m_batchsize, C, height, width)

        out = self.gamma*out + x
        return out

两个模块的融合在encoding/models/danet.py
中如下:

class DANetHead(nn.Module):
    def __init__(self, in_channels, out_channels, norm_layer):
        super(DANetHead, self).__init__()
        inter_channels = in_channels // 4
        self.conv5a = nn.Sequential(nn.Conv2d(in_channels, inter_channels, 3, padding=1, bias=False),
                                   norm_layer(inter_channels),
                                   nn.ReLU())
        
        self.conv5c = nn.Sequential(nn.Conv2d(in_channels, inter_channels, 3, padding=1, bias=False),
                                   norm_layer(inter_channels),
                                   nn.ReLU())

        self.sa = PAM_Module(inter_channels)
        self.sc = CAM_Module(inter_channels)
        self.conv51 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 3, padding=1, bias=False),
                                   norm_layer(inter_channels),
                                   nn.ReLU())
        self.conv52 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 3, padding=1, bias=False),
                                   norm_layer(inter_channels),
                                   nn.ReLU())

        self.conv6 = nn.Sequential(nn.Dropout2d(0.1, False), nn.Conv2d(512, out_channels, 1))
        self.conv7 = nn.Sequential(nn.Dropout2d(0.1, False), nn.Conv2d(512, out_channels, 1))

        self.conv8 = nn.Sequential(nn.Dropout2d(0.1, False), nn.Conv2d(512, out_channels, 1))

    def forward(self, x):
        feat1 = self.conv5a(x)
        sa_feat = self.sa(feat1)
        sa_conv = self.conv51(sa_feat)
        sa_output = self.conv6(sa_conv)

        feat2 = self.conv5c(x)
        sc_feat = self.sc(feat2)
        sc_conv = self.conv52(sc_feat)
        sc_output = self.conv7(sc_conv)

        feat_sum = sa_conv+sc_conv
        
        sasc_output = self.conv8(feat_sum)

        output = [sasc_output]
        output.append(sa_output)
        output.append(sc_output)
        return tuple(output)

上面就是模型的融合,可以看到就是把两个模型进行逐元素相加操作。。

参考:
冯爽朗

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351