Tax4Fun2 16s扩增子群落功能预测 使用小结

Tax4Fun2是一个基于16S rRNA数据集预测微生物群落功能的R包,是Tax4Fun的升级版本。
其发布在Github项目bwemheu / Tax4Fun2下,目前已更新到Tax4Fun2 v1.1.6
下面以自带示例简单学习一下它的使用过程:

1.下载、安装和配置
#shell
wget https://github.com/bwemheu/Tax4Fun2/releases/download/v1.1.6/Tax4Fun2_1.1.6.tar.gz

#R
install.packages(pkgs = "Tax4Fun2_1.1.6.tar.gz", repos = NULL, source = TRUE)
library(Tax4Fun2)

#简单配置
buildReferenceData(path_to_working_directory = ".")#构建参考数据库
buildDependencies(path_to_reference_data = "./Tax4Fun2_ReferenceData_v2")#安装依赖程序blast
getExampleData(path_to_working_directory = ".")#下载并构建 Tax4Fun2 测试数据
2.仅使用默认参考数据进行功能预测
####物种注释####
runRefBlast(path_to_otus = 'KELP_otus.fasta', 
            path_to_reference_data = './Tax4Fun2_ReferenceData_v2', 
            path_to_temp_folder = 'Kelp_Ref99NR', 
            database_mode = 'Ref99NR', 
            use_force = TRUE, 
            num_threads = 4)

####预测群落功能####
makeFunctionalPrediction(path_to_otu_table = 'KELP_otu_table.txt', 
                         path_to_reference_data = './Tax4Fun2_ReferenceData_v2',
                         path_to_temp_folder = 'Kelp_Ref99NR', 
                         database_mode = 'Ref99NR',
                         normalize_by_copy_number = TRUE, #默认,用参考数据库中每个序列计算的16S rRNA拷贝数的平均值进行归一化
                         min_identity_to_reference = 0.97, 
                         normalize_pathways = FALSE)#默认,将把每个KO的相对丰度关联到它所属的每个路径上
#或者
makeFunctionalPrediction(path_to_otu_table = 'KELP_otu_table.txt', 
                         path_to_reference_data = './Tax4Fun2_ReferenceData_v2', 
                         path_to_temp_folder = 'Kelp_Ref99NR', 
                         database_mode = 'Ref99NR', 
                         normalize_by_copy_number = TRUE, 
                         min_identity_to_reference = 0.97, 
                         normalize_pathways = TRUE)#非默认,将把每个KO的相对丰度平均分配到所有它所属的路径上。
3.使用默认数据库和用户生成的数据库进行功能预测,需要自己从源文件构建数据库,一共需要三步
####提取SSU序列####
# 1.1 Extracting SSU sequences from a single genome
extractSSU(genome_file = "OneProkaryoticGenome.fasta", file_extension = "fasta", 
           path_to_reference_data = "Tax4Fun2_ReferenceData_v2")
# 1.1 Extracting SSU sequences from multiple genomes
extractSSU(genome_folder = "MoreProkaryoticGenomes", file_extension = "fasta",
           path_to_reference_data = "Tax4Fun2_ReferenceData_v2")
####为原核基因组分配功能####
# 2.1 Assigning function to a single genome
assignFunction(genome_file = "OneProkaryoticGenome.fasta", file_extension = "fasta", 
               path_to_reference_data = "Tax4Fun2_ReferenceData_v2", num_of_threads = 8, fast = TRUE)
# 2.2 Assigning function to multiple genomes
assignFunction(genome_folder = "MoreProkaryoticGenomes/", file_extension = "fasta",
               path_to_reference_data = "Tax4Fun2_ReferenceData_v2", num_of_threads = 1, fast = TRUE)
####生成参考数据(程序提供了 3 种方法)####
# 3.1 Generate user-defined reference data without uclust from a single genome
generateUserData(path_to_reference_data = './Tax4Fun2_ReferenceData_v2', path_to_user_data = '.',
                 name_of_user_data = 'User_Ref0', SSU_file_extension = '_16SrRNA.ffn', KEGG_file_extension = '_funPro.txt')
# 3.2 Generate user-defined reference data without uclust
generateUserData(path_to_reference_data = './Tax4Fun2_ReferenceData_v2', path_to_user_data = 'MoreProkaryoticGenomes', 
                 name_of_user_data = 'User_Ref1', SSU_file_extension = '_16SrRNA.ffn', KEGG_file_extension = '_funPro.txt')
# 3.3 Generate user-defined reference data with uclust
generateUserDataByClustering(path_to_reference_data = './Tax4Fun2_ReferenceData_v2', path_to_user_data = 'MoreProkaryoticGenomes',
                             name_of_user_data = 'User_Ref2', SSU_file_extension = '_16SrRNA.ffn', KEGG_file_extension = '_funPro.txt', use_force = TRUE)
#推荐选择generateUserDataByClustering,该命令包含一个uclust聚类步骤,可消除数据中的冗余
4.以非聚类方式进行功能预测
####从上述3.2生成参考数据开始,以非聚类方式####
generateUserData(path_to_reference_data = "Tax4Fun2_ReferenceData_v2", 
                 path_to_user_data = "KELP_UserData", #指定用户要自定义数据库的数据源文件位置,是运行第一步extractSSU和第二步assignFunction之后得到的,此处提供已经运行好的以节省运行时间
                 name_of_user_data = "KELP1", #为您的数据库提供一个名称
                 SSU_file_extension = ".ffn", #运行第一步extractSSU后得到
                 KEGG_file_extension = ".txt")#运行第二步assignFunction后得到

####物种注释####
runRefBlast(path_to_otus = "KELP_otus.fasta", 
            path_to_reference_data = "Tax4Fun2_ReferenceData_v2", 
            path_to_temp_folder = "Kelp_Ref99NR_withUser1", 
            database_mode = "Ref99NR", 
            use_force = T, 
            num_threads = 6, 
            include_user_data = T, path_to_user_data = "KELP_UserData", name_of_user_data = "KELP1")

####预测群落功能####
makeFunctionalPrediction(path_to_otu_table = "KELP_otu_table.txt", 
                         path_to_reference_data = "Tax4Fun2_ReferenceData_v2", 
                         path_to_temp_folder = "Kelp_Ref99NR_withUser1", 
                         database_mode = "Ref99NR", 
                         normalize_by_copy_number = T, 
                         min_identity_to_reference = 0.97, 
                         normalize_pathways = F, 
                         include_user_data = T, path_to_user_data = "KELP_UserData", name_of_user_data = "KELP1")
5.以Vsearch聚类方式进行功能预测
####从上述3.3生成参考数据开始,以Vsearch聚类方式####
generateUserDataByClustering(path_to_reference_data = "Tax4Fun2_ReferenceData_v2", 
                             path_to_user_data = "KELP_UserData", 
                             name_of_user_data = "KELP2", 
                             SSU_file_extension = ".ffn", 
                             KEGG_file_extension = ".txt", 
                             similarity_threshold = 0.99)#使用uclust对提取的SSU序列进行聚类

####物种注释####
runRefBlast(path_to_otus = "KELP_otus.fasta", 
            path_to_reference_data = "Tax4Fun2_ReferenceData_v2", 
            path_to_temp_folder = "Kelp_Ref99NR_withUser2", 
            database_mode = "Ref99NR", 
            use_force = T, 
            num_threads = 6, 
            include_user_data = T, path_to_user_data = "KELP_UserData", name_of_user_data = "KELP2")

####预测群落功能####
makeFunctionalPrediction(path_to_otu_table = "KELP_otu_table.txt", 
                         path_to_reference_data = "Tax4Fun2_ReferenceData_v2", 
                         path_to_temp_folder = "Kelp_Ref99NR_withUser2", 
                         database_mode = "Ref99NR", 
                         normalize_by_copy_number = T, 
                         min_identity_to_reference = 0.97, 
                         normalize_pathways = F, 
                         include_user_data = T, path_to_user_data = "KELP_UserData", name_of_user_data = "KELP2")
6.计算(多)功能冗余指数(实验性功能)

计算KEGG功能的系统发育分布(高FRI->高冗余度,低FRI->低冗余度,可能会随着群落变化而丢失)

####物种注释####
runRefBlast(path_to_otus = "Water_otus.fna", 
            path_to_reference_data = "Tax4Fun2_ReferenceData_v2", 
            path_to_temp_folder = "Water_Ref99NR", 
            database_mode = "Ref99NR", 
            use_force = T, 
            num_threads = 6)

####计算functional redundancy indices(FRI)####
calculateFunctionalRedundancy(path_to_otu_table = "Water_otu_table.txt", 
                              path_to_reference_data = "Tax4Fun2_ReferenceData_v2", 
                              path_to_temp_folder = "Water_Ref99NR", 
                              database_mode = "Ref99NR", 
                              min_identity_to_reference = 0.97)

#或者
calculateFunctionalRedundancy(path_to_otu_table = "Water_otu_table.txt", 
                              path_to_reference_data = "Tax4Fun2_ReferenceData_v2", 
                              path_to_temp_folder = "Water_Ref99NR", 
                              database_mode = "Ref99NR", 
                              min_identity_to_reference = 0.97, 
                              prevalence_cutoff = 1.0)#自定义prevalence_cutoff值,此截止值用于将功能配置文件转换为二元向量(功能x存在或者不存在)

PS:感觉学到2就够日常使用了

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容