opencv--图像相似度检测

知哈希算法(perceptual hash algorithm),它的作用是对每张图像生成一个“指纹”(fingerprint)字符串,然后比较不同图像的指纹。结果越接近,就说明图像越相似。

实现步骤

1.缩小尺寸:将图像缩小到8*8的尺寸,总共64个像素。(这个可以根据检测精度调整,最后sim临界值也会变)

这一步的作用是去除图像的细节,只保留结构/明暗等基本信息,摒弃不同尺寸/比例带来的图像差异;这一步的作用是去除图像的细节,只保留结构/明暗等基本信息,摒弃不同尺寸/比例带来的图像差异;

2.简化色彩:将缩小后的图像,转为64级灰度,即所有像素点总共只有64种颜色;

3.计算平均值:计算所有64个像素的灰度平均值;

4.比较像素的灰度:将每个像素的灰度,与平均值进行比较,大于或等于平均值记为1,小于平均值记为0;

5.计算哈希值:将上一步的比较结果,组合在一起,就构成了一个64位的整数,这就是这张图像的指纹。组合的次序并不重要,只要保证所有图像都采用同样次序就行了;

6.得到指纹以后,就可以对比不同的图像,看看64位中有多少位是不一样的。在理论上,这等同于”汉明距离”(Hamming distance,在信息论中,两个等长字符串之间的汉明距离是两个字符串对应位置的不同字符的个数)。

如果不相同的数据位数不超过5,就说明两张图像很相似;

如果大于10,就说明这是两张不同的图像。

结果:

同一张图

image

不同图

image

#include <iostream>
#include <opencv2/opencv.hpp>


using namespace std;
using namespace cv;


void CheckSimlar()
{

    string strSrcImageName = "E:\\pic\\3.png";
    string strSrcImageName2 = "E:\\pic\\4.png";


    cv::Mat matSrc, matSrcT, matSrc1, matSrc2;

    matSrc = cv::imread(strSrcImageName, IMREAD_COLOR);
    matSrcT = cv::imread(strSrcImageName2, IMREAD_COLOR);


    imshow("q3", matSrc);
    imshow("q5", matSrcT);
    CV_Assert(matSrc.channels() == 3);
    CV_Assert(matSrcT.channels() == 3);

    cv::resize(matSrc, matSrc1, cv::Size(1920, 1080), 0, 0, cv::INTER_NEAREST);
    //cv::flip(matSrc1, matSrc1, 1);
    cv::resize(matSrcT, matSrc2, cv::Size(1920, 1080), 0, 0, cv::INTER_LANCZOS4);

    cv::Mat matDst1, matDst2;

    cv::resize(matSrc1, matDst1, cv::Size(80, 80), 0, 0, cv::INTER_CUBIC);
    cv::resize(matSrc2, matDst2, cv::Size(80, 80), 0, 0, cv::INTER_CUBIC);

    cv::cvtColor(matDst1, matDst1, COLOR_BGR2GRAY);
    cv::cvtColor(matDst2, matDst2, COLOR_BGR2GRAY);

    int iAvg1 = 0, iAvg2 = 0;
    int arr1[6400], arr2[6400];

    for (int i = 0; i < 80; i++) {
        uchar* data1 = matDst1.ptr<uchar>(i);
        uchar* data2 = matDst2.ptr<uchar>(i);

        int tmp = i * 80;

        for (int j = 0; j < 80; j++) {
            int tmp1 = tmp + j;

            arr1[tmp1] = data1[j] / 40 * 40;
            arr2[tmp1] = data2[j] / 40 * 40;

            iAvg1 += arr1[tmp1];
            iAvg2 += arr2[tmp1];
        }
    }

    iAvg1 /= 6400;
    iAvg2 /= 6400;

    for (int i = 0; i < 6400; i++) {
        arr1[i] = (arr1[i] >= iAvg1) ? 1 : 0;
        arr2[i] = (arr2[i] >= iAvg2) ? 1 : 0;
    }

    int iDiffNum = 0;

    for (int i = 0; i < 6400; i++)
        if (arr1[i] != arr2[i])
            ++iDiffNum;

    cout << "iDiffNum = " << iDiffNum << endl;

    if (iDiffNum <= 5)
        cout << "two images are very similar!" << endl;
    else if (iDiffNum > 10)
        cout << "they are two different images!" << endl;
    else
        cout << "two image are somewhat similar!" << endl;
}

int main()
{
    std::cout << "Hello World!\n";

    CheckSimlar();
    waitKey(0);

}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,588评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,456评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,146评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,387评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,481评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,510评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,522评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,296评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,745评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,039评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,202评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,901评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,538评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,165评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,415评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,081评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,085评论 2 352

推荐阅读更多精彩内容