DDBS Paxos

Paxos 有点类似我们之前说的 2PC,3PC,但是解决了他们俩的各种硬伤。该算法在很多大厂都得到了工程实践,比如阿里的 OceanBase 的分布式数据库,底层就是使用的 paxos 算法。再比如 Google 的 chubby 分布式锁也是用的这个算法。可见该算法在分布式系统中的地位,甚至于,paxos 就是分布式一致性的代名词。

Paxos 角色

在paxos算法中,分为4种角色:

  • Proposer :信使
  • Acceptor:决策者
  • Client:产生议题者
  • Learner:最终决策学习者

不过为了方便理解,我们将Proposer摘取出来作为算法的主角,其他三者为配角。

Paxos 举例说明

在 Paxos 岛上,有A1, A2, A3, A4, A5 5位议员,就税率问题进行决议,决议结果由少数服从多数来决定。
我们假设几个场景来解释:

场景 1.

(暂且不考虑信使,即不考虑分布式网络问题)
A1 说:税率应该是 10%。而此时只有他一个人提这个建议。如下图:


很完美,没有任何人和他竞争提案,他的这个提案毫无阻挠的通过了。A2 - A5 都会回应他:我们收到了你的提案,等待最终的批准。而 A1 在收到 2 份回复后(加上A1自己,表决结果过半),就可以发布最终的决议:税率定位 10%,不用再讨论了。

场景 2.

现在我们假设在 A1 提出 10% 税率提案的同时, A5 决定将税率定为 20%,如果这个提案要通过侍从送到其他议员的案头,A1 的草案将由 4 位侍从送到 A2-A5 那里。但是侍从不靠谱(代表分布式环境不靠谱),负责 A2 和 A3 的侍从顺利送达,而负责 A4 和 A5 的侍从则开溜了!而 A5 的草案则送到了 A4 和 A3 的手中。



现在,A1 ,A2,A3 收到了 A1 的提案,A3,A4, A5 收到 A5 的提案,按照 Paxos 的协议,A1,A2,A4,A5 4个侍从将接受他们的提案,侍从拿着回复:我已收到你的提案,等待最终批准 回到提案者那里。

而 A3 的行为将决定批准哪一个。当 A3 同时收到了 A1 和 A5 的请求,该如何抉择呢?不同的抉择将会导致不同的结果。

场景 2. 抉择1.

假设 A1 的提案先送到 A3 那里,并且 A3 接受了该提案并回复了侍从。这样,A1 加上 A2 加上 A3,构成了多数派,成功确定了税率为 10%。 而 A5 的侍从由于路上喝酒喝多了,晚到了一天,等他到了,税率已经确定了(决策已经成型),A3 回复 A5:兄弟,你来的太晚了,税率已经定好了,不用折腾了,听 A1 的吧。

场景 2. 抉择2.

依然假设 A1 的提案先送到 A3 处,但是这次 A5 的侍从不是放假了,只是中途耽搁了一会。这次, A3 依然会将"接受"回复给 A1 .但是在决议成型之前它又收到了 A5 的提案。这时协议根据 A5 的身份地位有两种处理方式。

  1. 当 A5 地位很高,例如 CEO,就回复 A5:我已收到您的提案,等待最终批准,但是您之前有人提出将税率定为10%,请明察。
  2. 当 A5 没地位,普通码农一个,直接不回复。等待 A1 广播:税率定为 10% 啦!!

场景 2. 抉择3.

在这个情况中,我们将看见,根据提案的时间提案者的权势决定是否应答是有意义的。在这里,时间和提案者的权势就构成了给提案编号的依据。这样的编号符合"任何两个提案之间构成偏序"的要求。

A1 和 A5 同样提出上述提案,这时 A1 可以正常联系 A2 和 A3,A5 也可以正常联系这两个人。这次 A2 先收到 A1 的提案; A3 则先收到 A5 的提案。而 A5 更有地位。
在这种情况下,已经回答 A1 的 A2 发现有比 A1 更有权势的 A5 提出了税率 20% 的新提案,于是回复A5说:我已收到您的提案,等待最终批准。
而回复 A5 的 A3 发现新的提案者A1是个小人物,没地位不予应答。
此时,A5 得到了 A2,A3 的回复,于是 A5 说:税率定为 20%,别再讨论了。
那 A4 呢? A4 由于睡过头了(决议已经成型),迷迷糊糊的说:现有的税率是什么? 如果没有决定,则建议将其定为 15%.
这个时候,其他的议员就告诉他:哥们,已经定为 20% 了,别折腾了。洗洗继续睡吧。
整个过程如下图:


总结

我们可以看到Paxos算法就是少数服从多数,同时,还会根据议员的身份和提案的时间来判断是否需要应答,这个身份其实就是一个编号,是为了防止出现活性导致死循环。
Paxos 的目标:保证最终有一个提案会被选定,当提案被选定后,其他议员最终也能获取到被选定的提案。
Paxos 协议用来解决的问题可以用一句话来简化: 将所有节点都写入同一个值,且被写入后不再更改。

注意:这一切都是在没有 拜占庭将军 问题的基础上建立的,即消息不会被篡改(因为分布式大多在局域网中)。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,816评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,729评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,300评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,780评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,890评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,084评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,151评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,912评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,355评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,666评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,809评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,504评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,150评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,121评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,628评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,724评论 2 351