高三数学公式速查

奇偶性

\\ \sin(-x)=-\sin x \\ \cos(-x)=\cos x \\ \tan(-x)=-\tan x

加减

\\ \sin^2 x + cos^2 x=1 \\ \sin(x \pm y) = \sin x \cos y \pm \cos x \sin y \\ \cos(x \pm y) = \cos x \cos y \mp \sin x \sin y \\ \displaystyle \tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}

\displaystyle \sin(\frac\pi2+x)=\cos x,\quad \sin(\pi+x)=-\sin x,\quad \sin(\frac{3\pi}2+x)=-\cos x

\displaystyle \cos(\frac\pi2+x)=-\sin x,\quad \cos(\pi+x)=-\cos x,\quad \cos(\frac{3\pi}2+x)=\sin x

\displaystyle \tan(\frac\pi2 \pm x) = \mp \cot x,\quad \tan(\pi \pm x) = \pm \tan x,\quad \tan(\frac{3\pi}2 \pm x)= \mp \cot x

倍角公式

\displaystyle \sin2x = 2\sin x \cos x,\qquad \qquad \cos2x = \cos^2x - \sin^2x, \qquad \tan2x = \frac{2\tan x}{1-\tan^2x} = \frac2{\cot x-\tan x}

\displaystyle \sin3x = 3\sin x - 4\sin^3x,\qquad \cos3x = 4\cos^3x - 3\cos x,\quad \tan3x=\frac{3\tan x-tan^3x}{1-3\tan^2x}

\displaystyle \sin4x = 8\cos^3x\sin x - 4\cos x\sin x,\quad \cos4x = 8\cos^4x - 8\cos^2x+1, \quad \tan4x = \frac{4\tan x-4\tan^3x}{1-6\tan^2x+\tan^4x}

万能公式

\displaystyle \sin2x = \frac{2\tan x}{1+\tan^2x},\quad \cos2x = \frac{1-\tan^2x}{1+\tan^2x},\quad \tan2x = \frac{2\tan x}{1-\tan^2x}

半角公式

\displaystyle \sin^2\frac x 2=\frac12(1-\cos x),\qquad \cos^2\frac x2=\frac12(1+\cos x) \\

\displaystyle \sin \frac x2 = \begin{cases} \displaystyle \sqrt{\frac {1}{2}(1-cos\ x)}, & 1 \le x \le \pi \\ \displaystyle -\sqrt{\frac {1}{2}(1-cos\ x)}, & \pi \le x \le 2\pi \end{cases}

\displaystyle \cos \frac x2 = \begin{cases} \displaystyle \sqrt{\frac {1}{2}(1+cos\ x)}, & -\pi \le x \le \pi \\ \displaystyle -\sqrt{\frac {1}{2}(1+cos\ x)}, & \pi \le x \le 3\pi \end{cases}

\displaystyle \tan\frac x2 = \frac{\sin x}{1+\cos x}=\frac{1-\cos x}{\sin x}

和差化积

\\ \displaystyle \sin x \pm \sin y = 2\sin\frac{x \pm y}2 \cos\frac{x \mp y}2 \\ \displaystyle \cos x + \cos y = 2\cos\frac{x+y}2 \cos\frac{x-y}2 \\ \displaystyle \cos x - \cos y = 2\sin\frac{x+y}2 \cos\frac{y-x}2 \\ \displaystyle \cos x \pm \sin x = \sqrt2 \sin(\frac\pi4 \pm x) \\ \displaystyle \tan x \pm \tan y = \frac{\sin(x \pm y)}{\cos x \cos y}

积化和差

\\ \displaystyle \sin x \sin y = \frac12 (\cos(x-y)-\cos(x+y)) \\ \displaystyle \cos x \cos y = \frac12 (\cos(x-y)+\cos(x+y)) \\ \displaystyle \sin x \cos y = \frac12 (\sin(x-y)+\sin(x+y)) \\ \displaystyle \tan x \tan y =\ \frac{\tan x + \tan y}{\cot x + \cot y} =\ -\frac{\tan x - \tan y}{\cot x - \cot y}

方幂公式

\\ \displaystyle \sin^2x = \frac12 (1-\cos2x) = 1-\cos^2x = \frac{\tan^2x}{1+\tan^2x}\\ \displaystyle \cos^2x = \frac12 (1+\cos2x) = 1-\sin^2x = \frac1{1+\tan^2x}\\ \displaystyle \tan^2x = \frac{\sin^2x}{1-\sin^2x} = \frac{1-\cos^2x}{\cos^2x}

辅助角公式

\\ \displaystyle a\sin\alpha + b\cos\alpha = \sqrt{a^2+b^2}\sin(\alpha+\varphi), \quad 0 \le \varphi \le 2\pi

\displaystyle \sin\alpha \pm \cos\alpha = \sqrt2\sin(\alpha\pm\frac\pi4)

\displaystyle \sqrt3\sin\alpha \pm \cos\alpha = 2\sin(\alpha\pm\frac\pi6)

\displaystyle \sin\alpha \pm \sqrt3\cos\alpha = 2\sin(\alpha\pm\frac\pi3)

特殊三角等式

\sin(\alpha+\beta)\sin(\alpha-\beta) = \sin^2\alpha-\sin^2\beta

\cos(\alpha+\beta)\cos(\alpha-\beta) = \cos^2\alpha-\sin^2\beta=\cos^2\beta-\sin^2\alpha

\cot\alpha-\tan\alpha = 2\cot2\alpha

常见公式变形

\displaystyle \sqrt{1+\cos\alpha} = \sqrt2\cos\frac\alpha2,\quad \sqrt{1-\cos\alpha} = \sqrt2\sin\frac\alpha2

\displaystyle 1 \pm \sin2\alpha =(\sin\alpha \pm \cos\alpha)^2,\quad \frac{1\pm\tan\alpha}{1\mp\tan\alpha} = \tan(\frac\pi4 \pm \alpha)

\displaystyle \tan\alpha \pm \tan\beta = \tan(\alpha \pm \beta)(1 \mp \tan\alpha\tan\beta)

常见角的变换

\displaystyle \alpha = (\alpha + \beta) - \beta, \quad \alpha = 2\frac\alpha2, \quad \frac\pi2 = (\frac\pi4+\alpha)+(\frac\pi4-\alpha)

\displaystyle 2\alpha = (\alpha+\beta) + (\alpha-\beta), \\ 2\beta = (\alpha+\beta) - (\alpha-\beta) \qquad
\displaystyle \frac{\alpha+\beta}2 = (\alpha-\frac\beta2) - (\frac\alpha2-\beta) \\ \displaystyle \frac{\alpha-\beta}2 = (\alpha+\frac\beta2) - (\frac\alpha2+\beta)

幂指数运算法则

\displaystyle a^ra^s=a^{r+s},\quad (a^r)^s=a^{rs},\quad (ab)^r=a^rb^r \\ a^{\frac m n}=\sqrt[n]{a^m},\quad (a>0, m,n\in\mathbb{N},且n>1)

对数运算法则

a^{\log_aN} = N, \quad \log_aa = 1, \quad \log_a 1 = 0 \quad (其中N>0,a>0且a \ne 1)

\displaystyle \log_a(MN) = \log_aM + \log_aN, \quad \log_a(\frac MN) = \log_aM - \log_aN

\displaystyle \log_aN^m = m\log_aN, \quad \log_a b = \frac{\log_cb}{\log_ca} (a>0且a\ne1,c>0且c\ne1,b>0)

数列
等差 等比
定义 a_{n+1}-a_n = d \frac{a_{n+1}}{a_n} = q
通项公式 a_n=a_1+(n-1)d\\a_n=a_m+(n-m)d a_n=a_1q^{n-1}\\a_n=a_mq^{n-m}
公差(比) \displaystyle d=\frac{a_n-a_1}{n-1}(n\ne1)\\\displaystyle d=\frac{a_n-a_m}{n-m}(n\ne m) \displaystyle q^{n-1}=\frac{a_n}{a_1} \\ q^{n-m}=\frac{a_n}{a_m}
前n项和 \displaystyle S_n=\frac{n(a_1+a_n)}{2} \\ \displaystyle =na_1+\frac{n(n+1)}{2}d \displaystyle S_n=\frac{a_1(1-q^n)}{1-q}=\frac{a_1-a_nq}{1-q} \quad (q\ne1) \\ S_n=na_1 \quad(q=1)
中项公式 \displaystyle A=\frac a b G=\pm\sqrt{ab} \ (ab>0)

\displaystyle 1+2+3+\cdots+n \qquad\qquad = \frac{n(n+2)}2 \\ \displaystyle 1+3+5+\cdots+(2n-1) \quad =n^2 \\ \displaystyle 1^2+2^2+3^2+\cdots+n^2 \qquad=\frac{n(n+1)(2n+1)}6 \\ \displaystyle 1^3+2^3+3^3+\cdots+n^3 \qquad=[\frac{n(n+1)}2]^2

导数
法则 公式
加法 (f+g)'=f'+g'
乘以常数 (Cf)'=Cf'
乘法 (f \cdot g)'=f' \cdot g+f \cdot g'
除法 \displaystyle (\frac f g)'= \frac{f' \cdot g - f \cdot g'}{g^2}
复合函数 设\ y=f(u),u=g(x)\\\displaystyle f(g(x))'=\frac{df}{du}\frac{du}{dx}
函数 导数 取值范围
C常数 0 x\in \mathbb{R}
x 1 x\in \mathbb{R}
x^2 2x x\in \mathbb{R}
x^n(n=1,2\cdots) nx^{n-1} x\in \mathbb{R}
\displaystyle \frac1x \displaystyle -\frac1{x^2} x\ne0
\displaystyle \frac1{x^n}(n=1,2\cdots) \displaystyle -\frac{n}{x^{n+1}} x\ne0
\displaystyle x^a=e^{a\cdot \ln x}(a为实数) ax^{a-1} x>0
\displaystyle \sqrt x=x^{\frac12} \displaystyle \frac1{2\sqrt x} x>0
\displaystyle \sqrt[n]x=x^{\frac1n}(n=2,3\cdots) \displaystyle \frac{\sqrt[n]x}{nx} x>0
\ln x \displaystyle \frac1x x>0
\displaystyle \log_ax=\frac{\ln x}{\ln a}\\(a>0,a\ne1) \displaystyle \frac1{x\ln a} x>0
e^x e^x x\in \mathbb{R}
a^x=e^{x\cdot\ln a}\\(a>0,a\ne1) a^x\ln a x\in \mathbb{R}
\sin x \cos x x\in \mathbb{R}
\cos x -\sin x x\in \mathbb{R}
\tan x \displaystyle \frac1{\cos^2x} \displaystyle x \ne k\pi+\frac\pi2,k\in\mathbb{Z}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,463评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,868评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,213评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,666评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,759评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,725评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,716评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,484评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,928评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,233评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,393评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,073评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,718评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,308评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,538评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,338评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,260评论 2 352

推荐阅读更多精彩内容