光的反射&折射&透射&衍射

光的反射

光在传播到不同物质时,在分界面上改变传播方向又返回原来物质中的现象,叫做光的反射(Reflection)

光的反射定律:

三线共面:反射光线与入射光线、法线,在同一平面上;

两线分居:反射光线和入射光线分居在法线两侧;

两角相等:反射角等于入射角;

光具有可逆性:光的反射现象中,光路上是可逆的。

分类:

镜面反射(Specular Reflection)也称为正反射(Rrgular Reflection),是镜面状反射的波,反射光线与入射光线的表面法线具有相同的角度。

漫反射(Diffuse Reflection)平行光线射到凹凸不平的表面上,各条光线的反射角方向会混乱,反射光线射向各个方向,也称朗伯反射(Lambert Reflection)。

方向反射 Directional Reflection介于镜面反射和漫反射之间,也称非朗伯反射,其表现为各向都有反射,且各向反射强度不均匀,没有规律可寻。


光的折射

光从一种介质斜射入另一种介质时,传播方向发生改变,从而使光线在不同介质的交界处发生偏折,这种现象叫做光的折射(Refraction)。

特性:光的折射与光的反射一样都是发生在两种介质的交界处,只是反射光返回原介质中,而折射光线则进入到另一种介质中。由于光在两种不同的物质里传播速度不同,故在两种介质的交界处传播方向发生变化,这就是光的折射。

注意:在两种介质的分界处(不过有时没有),不仅会发生折射,也发生反射,例如在水或玻璃中,部分光线会反射回去,部分光线会进入水或玻璃中。反射光线光速与入射光线相同 ,折射光线光速与入射光线不相同。


全内反射:光折射的一个特殊情况,当光线由密度较高的介质(光密)到密度较低的介质(光疏)且入射角大于临界时,则只有反射光线,没有折射光线。光纤就是应用这种现象来运作。

光径的可逆性:在干涉与衍射可忽略的情况中,入射光线与反射光线的可交换性。就是在一条光径的终点,发出反方向的光,此光可沿原路径回到原来的起点。


光的透射

当光入射到透明或半透明材料表面时,一部分被反射,一部分被吸收,还有一部分可以穿透过去,这种现象称为光的透射(Transmission)。

透射是入射光经过折射穿过物体后的出射现象。被透射的物体为透明体或半透明体,如玻璃,滤色片等。

图片来源于网络

光的衍射

衍射(Diffraction),又称绕射,是指波遇到障碍物时偏离原来直线传播的物理现象。

在经典物理学中,波在穿过狭缝、小孔或圆盘之类的障碍物后会发生不同程度的弯散传播,这种现象被称为衍射。

衍射现象也是波的一种特性,是光在通过阔度与其波长相当的孔或缝时所发生的现象,光不会持续原来的直线路径,而是作扇形发散状。

假设将一个障碍物置放在光源和观察屏之间,则会有光亮区域与阴暗区域出现于观察屏,而且这些区域的边界并不锐利,是一种明暗相间的复杂图样。这现象称为光的衍射,当波在其传播路径上遇到障碍物时,都有可能发生这种现象。

衍射不仅使物体的几何阴影失去清晰的轮廓,在边缘还会出现一系列明暗相间的亮纹。

除此之外,当光波穿过折射率不均匀的介质时,或当声波穿过声阻抗不均匀的介质时,也会发生类似的效应。在一定条件下,不仅水波、光波能够产生肉眼可见的衍射现象,其他类型的电磁波(例如X射线和无线电波等)也能够发生衍射。

没有人能够令人满意地定义干涉衍射的区别。这只是术语用途的问题,其实二者在物理上并没有什么特别的、重要的区别。

光不仅会沿直线传播、折射和反射,还能够以第四种方式传播,即通过衍射的形式传播。

衍射效应在日常生活中并不罕见。许多有关光的衍射实例都可以用肉眼观察到。例如,在CD光盘的表面,均匀地紧密排列着一系列的光轨,这些光轨相当于衍射光栅的作用。如果以一定的角度观察它们,会看到光在盘面表现出类似彩虹的彩色图样。将上述现象的基本原理加以利用,很多产生有意思衍射图样的衍射光栅,都可以被制备出来。衍射也是信用卡等所采用的全息摄影的技术基础之一。

红色激光的圆孔衍射图样(图片来自维基百科)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,816评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,729评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,300评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,780评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,890评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,084评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,151评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,912评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,355评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,666评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,809评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,504评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,150评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,121评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,628评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,724评论 2 351

推荐阅读更多精彩内容