毕设是单目深度估计。。。开始搞吧,一言难尽。。。
数据集地址:https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
数据集包括:
- 1449张处理好的有标签和补全深度的。
- Raw: The raw rgb, depth and accelerometer data as provided by the Kinect. 原始数据,Kinect拍的rgb和depth和加速度计的数据。
- Toolbox: Useful functions for manipulating the data and labels.用于处理数据的常用函数。
Labeled Dataset
文件名是nyu_depth_v2_labeled.mat
,可以用matlab打开。
我需要的是原图还有深度图。找了个脚本把图片提取出来了。
https://github.com/xmojiao/deeplab_v2/blob/master/nyu/mat_image.py
提取原图:
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
import scipy.io as sio
import h5py
import os
f=h5py.File("nyu_depth_v2_labeled.mat")
images=f["images"]
images=np.array(images)
# images = images.transpose((0,1,3,2))
path_converted='./nyu_images'
if not os.path.isdir(path_converted):
os.makedirs(path_converted)
from PIL import Image
images_number=[]
for i in range(len(images)):
images_number.append(images[i])
a=np.array(images_number[i])
# print len(img)
#img=img.reshape(3,480,640)
# print img.shape
r = Image.fromarray(a[0]).convert('L')
g = Image.fromarray(a[1]).convert('L')
b = Image.fromarray(a[2]).convert('L')
img = Image.merge("RGB", (r, g, b))
img = img.transpose(Image.ROTATE_270)
#img = img.rotate(270)
# plt.imshow(img)
# plt.axis('off')
# plt.show()
iconpath='./nyu_images/'+str(i)+'.jpg'
img.save(iconpath,optimize=True)
提取深度图:
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
import scipy.io as sio
import h5py
import os
from PIL import Image
f=h5py.File("nyu_depth_v2_labeled.mat")
depths=f["depths"]
depths=np.array(depths)
path_converted='./nyu_depths/'
if not os.path.isdir(path_converted):
os.makedirs(path_converted)
max = depths.max()
print depths.shape
print depths.max()
print depths.min()
depths = depths / max * 255
depths = depths.transpose((0,2,1))
print depths.max()
print depths.min()
for i in range(len(depths)):
# labels_number.append(labels[i])
# labels_0=np.array(labels_number[i])
# print labels_0.shape
# print type(labels_0)
print str(i) + '.png'
depths_img= Image.fromarray(np.uint8(depths[i]))
depths_img = depths_img.transpose(Image.FLIP_LEFT_RIGHT)
#depths_img = depths_img.transpose((1,0,2));
# depths_img = depths_img.rotate(270)
iconpath=path_converted+str(i)+'.png'
depths_img.save(iconpath, 'PNG', optimize=True)