Flume

file->flume->kafka

Flume组件选型

1)Source

(1)Taildir Source相比Exec Source、Spooling Directory Source的优势

TailDir Source:断点续传、多目录。Flume1.6以前需要自己自定义Source记录每次读取文件位置,实现断点续传。

Exec Source可以实时搜集数据,但是在Flume不运行或者Shell命令出错的情况下,数据将会丢失。

Spooling Directory Source监控目录,支持断点续传。

(2)batchSize大小如何设置?

    Event 1K左右时,500-1000合适(默认为100)

2)Channel

采用Kafka Channel,省去了Sink,提高了效率。KafkaChannel数据存储在Kafka里面,所以数据是存储在磁盘中。

配置文件实例

#为各组件命名
a1.sources = r1
a1.channels = c1

#描述source
a1.sources.r1.type = TAILDIR
a1.sources.r1.filegroups = f1
a1.sources.r1.filegroups.f1 = /opt/module/applog/log/app.*
a1.sources.r1.positionFile = /opt/module/flume/taildir_position.json
a1.sources.r1.interceptors =  i1
a1.sources.r1.interceptors.i1.type = com.atguigu.flume.interceptor.ETLInterceptor$Builder

#描述channel
a1.channels.c1.type = org.apache.flume.channel.kafka.KafkaChannel
a1.channels.c1.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092
a1.channels.c1.kafka.topic = topic_log
a1.channels.c1.parseAsFlumeEvent = false

#绑定source和channel以及sink和channel的关系
a1.sources.r1.channels = c1

kafka->flume->hdfs

Flume组件选型

1)FileChannel和MemoryChannel区别

MemoryChannel传输数据速度更快,但因为数据保存在JVM的堆内存中,Agent进程挂掉会导致数据丢失,适用于对数据质量要求不高的需求。

FileChannel传输速度相对于Memory慢,但数据安全保障高,Agent进程挂掉也可以从失败中恢复数据。

2)FileChannel优化

  • 通过配置dataDirs指向多个路径,每个路径对应不同的硬盘,增大Flume吞吐量。
    • Comma separated list of directories for storing log files. Using multiple directories on separate disks can improve file channel peformance
  • checkpointDirbackupCheckpointDir也尽量配置在不同硬盘对应的目录中,保证checkpoint损坏后,可以快速使用backupCheckpointDir恢复数据

3)Sink:HDFS Sink

(1)HDFS存入大量小文件,有什么影响?

元数据层面:每个小文件都有一份元数据,其中包括文件路径,文件名,所有者,所属组,权限,创建时间等,这些信息都保存在Namenode内存中。所以小文件过多,会占用Namenode服务器大量内存,影响Namenode性能和使用寿命

计算层面:默认情况下MR会对每个小文件启用一个Map任务计算,非常影响计算性能。同时也影响磁盘寻址时间。

(2)HDFS小文件处理

官方默认的这三个参数配置写入HDFS后会产生小文件,hdfs.rollInterval、hdfs.rollSize、hdfs.rollCount

基于以上hdfs.rollInterval=3600,hdfs.rollSize=134217728,hdfs.rollCount =0几个参数综合作用,效果如下:

(1)文件在达到128M时会滚动生成新文件

(2)文件创建超3600秒时会滚动生成新文件

配置文件实例

## 组件
a1.sources=r1
a1.channels=c1
a1.sinks=k1

## source1
a1.sources.r1.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.r1.batchSize = 5000
a1.sources.r1.batchDurationMillis = 2000
a1.sources.r1.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092,hadoop104:9092
a1.sources.r1.kafka.topics=topic_log
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = com.atguigu.flume.interceptor.TimeStampInterceptor$Builder

## channel1
a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /opt/module/flume/checkpoint/behavior1
a1.channels.c1.dataDirs = /opt/module/flume/data/behavior1/
a1.channels.c1.maxFileSize = 2146435071
a1.channels.c1.capacity = 1000000
a1.channels.c1.keep-alive = 6


## sink1
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = /origin_data/gmall/log/topic_log/%Y-%m-%d
a1.sinks.k1.hdfs.filePrefix = log-
a1.sinks.k1.hdfs.round = false


a1.sinks.k1.hdfs.rollInterval = 10
a1.sinks.k1.hdfs.rollSize = 134217728
a1.sinks.k1.hdfs.rollCount = 0

## 控制输出文件是原生文件。
a1.sinks.k1.hdfs.fileType = CompressedStream
a1.sinks.k1.hdfs.codeC = lzop

## 拼装
a1.sources.r1.channels = c1
a1.sinks.k1.channel= c1

内存优化

1)问题描述:如果启动消费Flume抛出如下异常:

ERROR hdfs.HDFSEventSink: process failed

java.lang.OutOfMemoryError: GC overhead limit exceeded

2)解决方案

vim flume/conf/flume-env.sh
export JAVA_OPTS="-Xms100m -Xmx2000m -Dcom.sun.management.jmxremote"
# JVM heap一般设置为4G或更高
# -Xmx与-Xms最好设置一致,减少内存抖动带来的性能影响,如果设置不一致容易导致频繁fullgc。
# -Xms表示JVM Heap(堆内存)最小尺寸,初始分配;-Xmx 表示JVM Heap(堆内存)最大允许的尺寸,按需分配。如果不设置一致,容易在初始化时,由于内存不够,频繁触发fullgc。
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,928评论 6 509
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,748评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,282评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,065评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,101评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,855评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,521评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,414评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,931评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,053评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,191评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,873评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,529评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,074评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,188评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,491评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,173评论 2 357

推荐阅读更多精彩内容