使用flume sink hdfs小文件优化以及HDFS小文件问题分析和解决

1.flume到hdfs小文件优化

项目的架构是使用flume直接从kafka读取数据Sink HDFS

1.1HDFS存入大量小文件的影响

  • 元数据层面:每个小文件都有一份元数据,其中包括文件路径,文件名,所有者,所属组,权限,创建时间等,这些信息都保存在Namenode内存中。所以小文件过多,会占用Namenode服务器大量内存,影响Namenode性能和使用寿命
  • 计算层面:默认情况下MR会对每个小文件启用一个Map任务计算,非常影响计算性能。同时也影响磁盘寻址时间。

1.2 小文件处理

image.png

官方默认的这三个参数配置写入HDFS后会产生小文件,hdfs.rollInterval、hdfs.rollSize、hdfs.rollCount
基于以上hdfs.rollInterval=3600,hdfs.rollSize=134217728,hdfs.rollCount =0几个参数综合作用,效果如下:
(1)文件在达到128M时会滚动生成新文件
(2)文件创建超3600秒时会滚动生成新文件

2. HDFS小文件优化

2.1 HDFS小文件弊端

HDFS上每个文件都要在NameNode上建立一个索引,这个索引的大小约为150byte,这样当小文件比较多的时候,就会产生很多的索引文件,一方面会大量占用NameNode的内存空间,另一方面就是索引文件过大使得索引速度变慢。但注意,存储小文件所需要的磁盘容量和数据块的大小无关。例如,一个1MB的文件设置为128MB的块存储,实际使用是1MB的磁盘空间,而不是128M,但他的索引在NameNode中占用的内存是150byte。

2.2 HDFS小文件解决方案

小文件的优化无非以下几种方式:

  • 在数据采集的时候,就将小文件或小批数据合成大文件再上传HDFS。
  • 在业务处理之前,在HDFS上使用MapReduce程序对小文件进行合并。
  • 在MapReduce处理时,可采用CombineTextInputFormat提高效率。
  • a. Hadoop Archive
    是一个高效地将小文件放入HDFS块中的文件存档工具,它能够将多个小文件打包成一个HAR文件,这样讲减少了NameNode的内存使用。
(1)需要启动YARN进程
[root@node09 hadoop-3.1.3]# start-yarn.sh
(2)归档文件
    把/input目录里面的所有文件归档成一个叫input.har的归档文件,并把归档后文件存储到/output路径下。
[root@node09 hadoop-3.1.3]# bin/hadoop archive -archiveName input.har –p  /input   /output
(3)查看归档
[root@node09 hadoop-3.1.3]# hadoop fs -lsr /output/input.har
[root@node09 hadoop-3.1.3]# hadoop fs -lsr har:///output/input.har
(4)解归档文件
[root@node09 hadoop-3.1.3]# hadoop fs -cp har:///output/input.har/*    /
  • b. Sequence File
    由一系列的二进制key/value 组成,如果key为文件名,value为文件内容,则可以将大批小文件合并成一个大文件。
  • c. CombineFileInputFormat
    是一种新的InputFormat,用于将多个文件合并成一个单独的Split,另外,它会考虑数据的存储位置
  • d. 开启JVM重用
    对于大量小文件Job,可以开启JVM重用会减少45%运行时间。
    JVM重用原理:一个Map运行一个JVM上,开启重用的话,该Map在JVM上运行完毕后,JVM继续运行其他Map
    具体设置:mapreduce.job.jvm.numtasks值在10-20之间
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,928评论 6 509
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,748评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,282评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,065评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,101评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,855评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,521评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,414评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,931评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,053评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,191评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,873评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,529评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,074评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,188评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,491评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,173评论 2 357