一次失败的面试,复习一次一致性哈希算法

话说前几天有一次,某大厂的二面。然后呢,烟哥那天刚好有事,所以去不了。于是就约了一场视频面试了!

全局Session

当时的情形是这样的,先介绍一下自己的项目。然后介绍完项目背景以后,因为有一个登陆模块。于是乎有了如下问题

面试官:“先说说全局Session干嘛用的,你们那边全局session是怎么做的?”

这个问题还是很容易的。因为一个应用通常有多台服务器,在登陆成功后,Session只会在其中某一台存储。需要想办法让多台服务器都识别到这个Session,因此才有了这个全局Session的概念。我们用的是后端统一存储的策略,有专门的用户管理系统,上面存储着用户信息以及Session状态。

烟哥注:目前业内在解决全局Sesssion上无外乎四种方法

(1)服务端自己进行同步,例如早期的项目,大概是07年那会的(我司老古董项目啊),那会Tomcat的集群能力不行。用的是Weblogic服务器,使用的就是Weblogic的Session复制功能。

(2)客户端存储法,将session存储到浏览器cookie中,每次http请求都带session。这里摸着良心坦白说,该方案从没用过,安全性太差。

(3)反向代理hash一致性,不需要修改应用代码。修改nginx的配置,保证同一个ip的请求落在同一个web-server上即可。

(4)后端统一存储,后端统一找一个中间件将Session存起来即可,这个中间件是数据库或者缓存。

面试官:“那你知道这个平台里Session怎么管理的么?”

必须不知道啊!对我们来说该平台只是一个黑盒,会调接口即可。

于是乎,一个让我头疼的问题出现了!

面试官:“如果让你设计这样一个平台,管理这些Session,你会怎么设计?”

用redis来存储Session,用sessionId作为key,用session当value进行存储。

OK,这时我头脑浮现的架构是这样的

面试官:"如果redis挂了呢?"

咦,这个时候,我突然懵了。面试官到底想问我什么?难道挂了,不是redis从服务器顶上么?这个问题莫非有什么玄机?

然后我是这样答的。

一般情况,主redis挂了,由从redis顶上。如果redis某个slot的主从节点全挂了,

那么我们在rediscluster中有一个配置叫

cluster-require-full-coverage

当cluster-require-full-coverage为no时,表示当负责一个插槽的主库下线且没有相应的从库进行故障恢复时,集群仍然可用。但是该槽的相关命令不可用。

当cluster-require-full-coverage为yes时,表示当负责一个插槽的主库下线且没有相应的从库进行故障恢复时,集群不可用。

该值默认值为yes,也就是集群处于不可用的状态。

这个时候,可能出现了网络中断!

面试官:"你的意思是,redis挂了,整个集群数据就不可用了?"

我回答嗯嗯,是的!

这个时候,面试官

面试官:"你不知道一致性哈希算法么?回去了解一下!"

然后我突然懵了。原来是我想太多,他这样问完,我才get到他问的点。

烟哥注:所以我才说这个面试我有点失败,和面试官不在一个频道上。如果是现场面,可以现场画图,则不会出现这种问题!

面试官想到的架构应该是这样的    

上图中,由于有4台服务器(排除从库),因此公式为hash(sessionId) % 4 = 2 ,可知定位到了第2号服务器。

但是呢,普通的如果4台缓存服务器已经不能满足我们的缓存需求,那么我们应该怎么做呢?很简单,多增加几台缓存服务器不就行了!

假设:我们增加了一台缓存服务器,那么缓存服务器的数量就由4台变成了5台。那么原本hash(sessionId) % 4 = 2 的公式就变成了hash(sessionId) % 5 = ?, 可想而知这个结果肯定不是2的,这种情况带来的结果就是当服务器数量变动时,所有缓存的位置都要发生改变!

于是乎,他才想引我去答一致性哈希算法!总之,该死的破网络!导致两边不在一个频道上!

一致性哈希

既然都提到了一致性哈希算法了,就当复习一下吧~~

一致性哈希算法的精髓只有一个:对2^32次方取模。

我们将二的三十二次方想象成一个圆,这个圆上的数字就是即0~(2^32)-1。

如下图所示

这时候有三台缓存服务器A、B、C。

我们

hash(服务器A的IP地址) % 2^32

插播一下,写到这里,这里我又想起一道题了!

有哪些常见的hash算法啊?

OK,先继续我们的话题。经过上面的运算,我们算出的结果一定是一个0到2^32-1之间的一个整数,我们就用算出的这个整数,代表服务器A,既然这个整数肯定处于0到2^32-1之间,那么,上图中的hash环上必定有一个点与这个整数对应,我们使用这个整数代表服务器A,那么,服务器A就可以映射到这个环上。

同理进行

hash(服务器B的IP地址) % 2^32

hash(服务器C的IP地址) % 2^32

于是,得到了下面这一张图

那么,我们要用服务器存储session,那么我们用sessionId做key,进行如下运算

hash(sessionId) % 2^32

得到的一个环上的值。那我们怎么知道session被存到哪个服务器上呢,OK,顺时针方向找到的第一个服务器就是。如下图所示

假设,我们现在有四个session,分别进行映射运算后得到如下的环

这么做的好处?

使用一致性算法后,当服务器B移除的时候,服务器B上的数据会顺时针移动到服务器C上去。从而避免了当服务器数量发生改变当时候,所有的session都失效。

如下所示

虚拟槽的应用?

真实世界中,服务器可能映射的并不均匀。这就导致了数据可能是下面这样的,大量的数据在A服务器上,导致数据不均匀

为了解决这个问题,我们给A、B、C三台服务器引入虚拟节点。如下图所示(图中黄色节点为虚拟节点)

如图所示,2号session和3号session映射到了虚拟B节点,就会存储到真实的B节点上。通过引入虚拟节点的方式,实现数据的均匀分配!

最后,本文内容全当复习一次一致性哈希算法。希望大家有所收获。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 224,289评论 6 522
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 95,968评论 3 402
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 171,336评论 0 366
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 60,718评论 1 300
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 69,734评论 6 399
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 53,240评论 1 314
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 41,631评论 3 428
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 40,599评论 0 279
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 47,139评论 1 324
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 39,166评论 3 345
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 41,286评论 1 354
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,917评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 42,604评论 3 336
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 33,075评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 34,205评论 1 275
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 49,814评论 3 381
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 46,351评论 2 365

推荐阅读更多精彩内容