19.范畴的语言*习题

1.如果两个序集被视为范畴,证明这两个范畴之间的函子是一个保序映射,或者说单调映射。如果f,g是这样的两个函子,证明存在由f到g的自然变换,当且仅当\forall a\in A,f(a)\leq g(a)

2.如果两个幺半群被视为范畴,证明他们之间的函子就是幺半群同态。那么两个函子之间的自然变换是什么?

3.练习2中,假如他们是群,证明两函子间存在自然映射,当且仅当f和g是共轭的。

4.如果G是一个群,并且视为范畴,证明G的恒等函子的自然变换就是G中心的一个元素。群G的中心是能与别的元素交换的元素之集。

5.证明协变可表函子保持单态

6.证明反变可表函子将满态映为单态。此命题与上一个命题形成对偶。

7.证明遗忘函子,由带幺交换环范畴到集合范畴,将一个环映为基础集,是忠实的,并且可由整系数多项式环Z[X]表示,但不保持满态。

8.如果ABC是小范畴,证明范畴同构,Fun代表函子范畴

9.证明一个收缩是单态,那么一定是同构。

10.验证,例1.2.7中单态,满态,同构的自然性。??没看懂什么意思

11.考虑一个小范畴,以及对应的函子范畴。证明函子范畴的一个态射(本质是自然变换)是一个单态,当且仅当这个自然变换的每一个分量是集合范畴中的单态。提示:使用米田引理。

12.练习11中的陈述将不再正确,当集合范畴被一个任意范畴替代。考虑上图所示范畴可构成一个反例。

13.考虑带幺交换环范畴,一个态射是满的,当\forall b\in B,1\otimes b=b\otimes 1,等价的有B\to B\otimes_A B是满射,或者说满态。


习题不在于做完,因为有的难,有的简单,想要做完往往要花费大量时间。但是,做题也是很必要的,阅读得来的太过容易,反而会忽略细节,要用的时候就无从下手,细节往往不在书中,而在思考中。做题就是要学着去思考,放慢节奏,对每一步都要牢牢把握。这也是学与用的结合,因为数学不同于其他,很难有实际的应用,更多的是用于理论的构建,所以,对其他学科理论的推导就是数学的应用。不过,这种应用往往就比较平凡。这也是矛盾啊,习题难度可高可低,具有针对性,却脱离实际,很难有获得感,而有现实背景的理论应用,往往又过于简单,不能覆盖所有的知识。

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 什么是 Monad (Functional Programming)? 道生一,一生二,二生三,三生万物。 这里的...
    光剑书架上的书阅读 17,322评论 1 29
  • 这篇文章只会大概解释一下,具体内容需要参考文中提到的连接。Haskell语言学习可以看这个教程,这篇文章不会介绍H...
    doyoubi阅读 3,792评论 0 13
  • 当复合律出现在某些数学结构中时,我们总是关注那些可消去,或者说可逆的元素。这一部分将学习范畴中具有左消去性的态射。...
    Obj_Arr阅读 991评论 0 1
  • 原文出处: A Brief, Incomplete, and Mostly Wrong History of Pr...
    Albert陈凯阅读 1,334评论 0 1
  • Promise 是很好解决 js 异步的方案。 Monad 单子 Monad 是一个 FP 中的专有名词。A mo...
    fri3nds阅读 575评论 0 1