用Redis轻松实现秒杀系统

秒杀系统的架构设计

秒杀系统,是典型的短时大量突发访问类问题。对这类问题,有三种优化性能的思路:

写入内存而不是写入硬盘

异步处理而不是同步处理

分布式处理

用上这三招,不论秒杀时负载多大,都能轻松应对。更好的是,Redis能够满足上述三点。因此,用Redis就能轻松实现秒杀系统。

用我这个方案,无论是电商平台特价秒杀,12306火车票秒杀,都不是事:)

下面介绍一下为什么上述三种性能优化思路能够解决秒杀系统的性能问题:

写入内存而不是写入硬盘

传统硬盘的读写性能是相当差的。SSD硬盘比传统硬盘快100倍。而内存又比SSD硬盘快10倍以上。因此,写入内存而不是写入硬盘,就能使系统的能力提升上千倍。也就是说,原来你的秒杀系统可能需要1000台服务器支撑,现在1台服务器就可以扛住了。

你可能会有这样的疑问:写入内存而不是持久化,那么如果此时计算机宕机了,那么写入的数据不就全部丢失了吗?如果你就这么倒霉碰到服务器宕机,那你就没秒到了,有什么大不了?

最后,后面真正处理秒杀订单时,我们会把信息持久化到硬盘中。因此不会丢失关键数据。

Redis是一个缓存系统,数据写入内存后就返回给客户端了,能够支持这个特性。

异步处理而不是同步处理

像秒杀这样短时大并发的系统,在性能负载上有一个明显的波峰和长期的波谷。为了应对相当短时间的大并发而准备大量服务器来应对,在经济上是相当不合算的。

因此,对付秒杀类需求,就应该化同步为异步。用户请求写入内存后立刻返回。后台启动多个线程从内存池中异步读取数据,进行处理。如用户请求可能是1秒钟内进入的,系统实际处理完成可能花30分钟。那么一台服务器在异步情况下其处理能力大于同步情况下1800多倍!

异步处理,通常用MQ(消息队列)来实现。Redis可以看作是一个高性能的MQ。因为它的数据读写都发生在内存中。

分布式处理

好吧。也许你的客户很多,秒杀系统即使用了上面两招,还是捉襟见肘。没关系,我们还有大招:分布式处理。如果一台服务器撑不住秒杀系统,那么就多用几台服务器。10台不行,就上100台。分布式处理,就是把海量用户的请求分散到多个服务器上。一般使用hash实现均匀分布。

这类系统在大数据云计算时代的今天已经有很多了。无非是用Paxos算法和Hash Ring实现的。

Redis Cluster正是这样一个分布式的产品。

使用Redis实现描述系统

Redis和Redis Cluster(分布式版本),是一个分布式缓存系统。其支持多种数据结构,也支持MQ。Redis在性能上做了大量优化。因此使用Redis或者Redis Cluster就可以轻松实现一个强大的秒杀系统。

基本上,你用Redis的这些命令就可以了。

RPUSH key value

插入秒杀请求

当插入的秒杀请求数达到上限时,停止所有后续插入。

后台启动多个工作线程,使用

LPOP key

读取秒杀成功者的用户id,进行后续处理。

或者使用LRANGE key start end命令读取秒杀成功者的用户id,进行后续处理。

每完成一条秒杀记录的处理,就执行INCR key_num。一旦所有库存处理完毕,就结束该商品的本次秒杀,关闭工作线程,也不再接收秒杀请求。

要是还撑不住,该怎么办

也许你会说,我们的客户很多。即使部署了Redis Cluster,仍然撑不住。那该怎么办呢?

记得某个伟人曾经说过:办法总比困难多!

下面,我们具体分析下,还有哪些情况会压垮我们架构在Redis(Cluster)上的秒杀系统。

脚本攻击

如现在有很多抢火车票的软件。它们会自动发起http请求。一个客户端一秒会发起很多次请求。如果有很多用户使用了这样的软件,就可能会直接把我们的交换机给压垮了。

这个问题其实属于网络问题的范畴,和我们的秒杀系统不在一个层面上。因此不应该由我们来解决。很多交换机都有防止一个源IP发起过多请求的功能。开源软件也有不少能实现这点。如linux上的TC可以控制。流行的Web服务器Nginx(它也可以看做是一个七层软交换机)也可以通过配置做到这一点。一个IP,一秒钟我就允许你访问我2次,其他软件包直接给你丢了,你还能压垮我吗?

交换机撑不住了

可能你们的客户并发访问量实在太大了,交换机都撑不住了。

这也有办法。我们可以用多个交换机为我们的秒杀系统服务。

原理就是DNS可以对一个域名返回多个IP,并且对不同的源IP,同一个域名返回不同的IP。如网通用户访问,就返回一个网通机房的IP;电信用户访问,就返回一个电信机房的IP。也就是用CDN了!

我们可以部署多台交换机为不同的用户服务。 用户通过这些交换机访问后面数据中心的Redis Cluster进行秒杀作业。

总结

有了Redis Cluster的帮助,做个支持海量用户的秒杀系统其实So Easy!

这里介绍的方案虽然是针对秒杀系统的,但其背后的原理对其他高并发系统一样有效。

最后,我们再重温一下高性能系统的优化原则:

写入内存而不是写入硬盘

异步处理而不是同步处理

分布式处理

我们现在有免费的大数据 Java架构公开课,每晚八点,有需要即可私信我,获取大量的免费资料。点进下方链接可以收获更多。

https://ke.qq.com/course/215398?flowToken=1002576

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容