题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2127
明显是最小割模型,首先,S向每个节点连边,容量为文科的价值,每个点向T连边,容量为理科的价值,接下来考虑相邻节点的情况(设a,b),只要a,b之中有一个选了理科,那么就要扣除共同选文科的价值,反之亦然,那么新增一个辅助点v,对于S向v连边,容量为a,b共同选文科的价值,然后v向a,b连边,容量无穷,这样,只有在a,b都属于割集S(就是都选了文科)的情况下,该S->v的边才不会被割掉,对于其他的处理也是这样的。
PS:后来才发现我傻X了,其实可以不用这么处理的,多了4倍的点,速度直接就跪了5555
代码:
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std ;
#define MAXV 60100
#define MAXN 110
#define inf 0x7fffffff
struct network {
struct edge {
edge *next , *pair ;
int t , f ;
} *head[ MAXV ] ;
void Add( int s , int t , int f ) {
edge *p = new( edge ) ;
p -> t = t , p -> f = f , p -> next = head[ s ] ;
head[ s ] = p ;
}
void AddEdge( int s , int t , int f ) {
Add( s , t , f ) , Add( t , s , 0 ) ;
head[ s ] -> pair = head[ t ] , head[ t ] -> pair = head[ s ] ;
}
int S , T ;
network( ) {
memset( head , 0 , sizeof( head ) ) ;
}
int h[ MAXV ] , gap[ MAXV ] ;
edge *d[ MAXV ] ;
int sap( int v , int flow ) {
if ( v == T ) return flow ;
int rec = 0 ;
for ( edge *p = d[ v ] ; p ; p = p -> next ) if ( p -> f && h[ v ] == h[ p -> t ] + 1 ) {
int ret = sap( p -> t , min( flow - rec , p -> f ) ) ;
p -> f -= ret , p -> pair -> f += ret , d[ v ] = p ;
if ( ( rec += ret ) == flow ) return flow ;
}
if ( ! ( -- gap[ h[ v ] ] ) ) h[ S ] = T ;
gap[ ++ h[ v ] ] ++ , d[ v ] = head[ v ] ;
return rec ;
}
int maxflow( ) {
int flow = 0 ;
memset( h , 0 , sizeof( h ) ) ;
memset( gap , 0 , sizeof( gap ) ) ;
for ( int i = 0 ; i ++ < T ; ) d[ i ] = head[ i ] ;
gap[ S ] = T ;
while ( h[ S ] < T ) flow += sap( S , inf ) ;
return flow ;
}
} net ;
int node[ MAXN ][ MAXN ] , V = 0 , n , m , sum = 0 ;
int main( ) {
scanf( "%d%d" , &n , &m ) ;
net.S = 5 * n * m - 2 * ( n + m ) + 1 ; net.T = net.S + 1 ;
for ( int i = 0 ; i ++ < n ; ) for ( int j = 0 ; j ++ < m ; ) {
node[ i ][ j ] = ++ V ; int x ; scanf( "%d" , &x ) ; sum += x ;
net.AddEdge( net.S , V , x ) ;
}
for ( int i = 0 ; i ++ < n ; ) for ( int j = 0 ; j ++ < m ; ) {
int x ; scanf( "%d" , &x ) ; sum += x ;
net.AddEdge( node[ i ][ j ] , net.T , x ) ;
}
for ( int i = 0 ; i ++ < n - 1 ; ) for ( int j = 0 ; j ++ < m ; ) {
int x ; scanf( "%d" , &x ) ; sum += x ;
net.AddEdge( net.S , ++ V , x ) ;
net.AddEdge( V , node[ i ][ j ] , inf ) , net.AddEdge( V , node[ i + 1 ][ j ] , inf ) ;
}
for ( int i = 0 ; i ++ < n - 1 ; ) for ( int j = 0 ; j ++ < m ; ) {
int x ; scanf( "%d" , &x ) ; sum += x ;
net.AddEdge( ++ V , net.T , x ) ;
net.AddEdge( node[ i ][ j ] , V , inf ) , net.AddEdge( node[ i + 1 ][ j ] , V , inf ) ;
}
for ( int i = 0 ; i ++ < n ; ) for ( int j = 0 ; j ++ < m - 1 ; ) {
int x ; scanf( "%d" , &x ) ; sum += x ;
net.AddEdge( net.S , ++ V , x ) ;
net.AddEdge( V , node[ i ][ j ] , inf ) , net.AddEdge( V , node[ i ][ j + 1 ] , inf ) ;
}
for ( int i = 0 ; i ++ < n ; ) for ( int j = 0 ; j ++ < m - 1 ; ) {
int x ; scanf( "%d" , &x ) ; sum += x ;
net.AddEdge( ++ V , net.T , x ) ;
net.AddEdge( node[ i ][ j ] , V , inf ) , net.AddEdge( node[ i ][ j + 1 ] , V , inf ) ;
}
printf( "%d\n" , sum - net.maxflow( ) ) ;
return 0 ;
}