高可用:系统无中断(难点)地执行其功能的能力。
形式上看,和高性能一样的,通过增加更多机器来达到目的,但其实本质上是有根本区别的:高性能增加机器目的在于“扩展”处理性能;高可用增加机器目的在于“冗余”处理单元,同时也带来了复杂性
一、计算高可用
“计算”指的是业务的逻辑处理。无论在哪台机器上进行计算,同样的算法和输入数据,产出的结果都是一样的,计算从一台机器迁移到另外一台机器,对业务并没有什么影响。
二、复杂度具体表现为:
考虑性能、成本、可维护性、可用性等因素,增加一个任务分配器,选择合适的任务分配器
任务分配器和真正的业务服务器之间有连接和交互,需要选择合适的连接方式,并且对连接进行管理。例如,连接建立、连接检测、连接中断后如何处理等。
任务分配器需要增加分配算法。例如,常见的双机算法有主备、主主,主备方案又可以细分为冷备、温备、热备。
复杂一点的高可用集群架构:
这个高可用集群相比双机来说,分配算法更加复杂,可以是 1 主 3 备、2 主 2 备、3 主 1 备、4 主 0 备,采用哪种方式,结合实际业务需求,ZooKeeper 采用的就是 1 主多备,而 Memcached 采用的就是全主 0 备。
三、存储高可用
对于需要存储数据的系统来说,整个系统的高可用设计关键点和难点就在于“存储高可用”。存储与计算相比,有一个本质上的区别:将数据从一台机器搬到到另一台机器,需要经过线路进行传输。线路传输的速度是毫秒级别,按照“数据 + 逻辑 = 业务”这个公式来套的话,数据不一致,即使逻辑一致,最后的业务表现就不一样了。
除了物理上的传输速度限制,传输线路本身也存在可用性问题,传输线路可能中断、可能拥塞、可能异常(错包、丢包),并且传输线路的故障时间一般都特别长,短的十几分钟,长的几个小时都是可能的。例如,2015 年支付宝因为光缆被挖断,业务影响超过 4 个小时;2016 年中美海底光缆中断 3 小时等。在传输线路中断的情况下,就意味着存储无法进行同步,在这段时间内整个系统的数据是不一致的。
综合分析,无论是正常情况下的传输延迟,还是异常情况下的传输中断,都会导致系统的数据在某个时间点或者时间段是不一致的,而数据的不一致又会导致业务问题;但如果完全不做冗余,系统的整体高可用又无法保证,所以存储高可用的难点不在于如何备份数据,而在于如何减少或者规避数据不一致对业务造成的影响。
分布式领域里面有一个著名的 CAP 定理,从理论上论证了存储高可用的复杂度。也就是说,存储高可用不可能同时满足“一致性、可用性、分区容错性”,最多满足其中两个,这就要求我们在做架构设计时结合业务进行取舍。
四、高可用状态决策
无论是计算高可用还是存储高可用,其基础都是“状态决策”,即系统需要能够判断当前的状态是正常还是异常,如果出现了异常就要采取行动来保证高可用。如果状态决策本身都是有错误或者有偏差的,那么后续的任何行动和处理无论多么完美也都没有意义和价值。但在具体实践的过程中,恰好存在一个本质的矛盾:通过冗余来实现的高可用系统,状态决策本质上就不可能做到完全正确。下面我基于几种常见的决策方式进行详细分析。
1. 独裁式
独裁式决策指的是存在一个独立的决策主体,我们姑且称它为“决策者”,负责收集信息然后进行决策;所有冗余的个体,我们姑且称它为“上报者”,都将状态信息发送给决策者。
独裁式的决策方式不会出现决策混乱的问题,因为只有一个决策者,但问题也正是在于只有一个决策者。当决策者本身故障时,整个系统就无法实现准确的状态决策。如果决策者本身又做一套状态决策,那就陷入一个递归的死循环了。
2. 协商式
协商式决策指的是两个独立的个体通过交流信息,然后根据规则进行决策,最常用的协商式决策就是主备决策。
这个架构的基本协商规则可以设计成:
2 台服务器启动时都是备机。
2 台服务器建立连接。
2 台服务器交换状态信息。
某 1 台服务器做出决策,成为主机;另一台服务器继续保持备机身份。
协商式决策的架构不复杂,规则也不复杂,其难点在于,如果两者的信息交换出现问题(比如主备连接中断),此时状态决策应该怎么做。
如果备机在连接中断的情况下认为主机故障,那么备机需要升级为主机,但实际上此时主机并没有故障,那么系统就出现了两个主机,这与设计初衷(1 主 1 备)是不符合的。
如果备机在连接中断的情况下不认为主机故障,则此时如果主机真的发生故障,那么系统就没有主机了,这同样与设计初衷(1 主 1 备)是不符合的。
如果为了规避连接中断对状态决策带来的影响,可以增加更多的连接。例如,双连接、三连接。这样虽然能够降低连接中断对状态带来的影响(注意:只能降低,不能彻底解决),但同时又引入了这几条连接之间信息取舍的问题,即如果不同连接传递的信息不同,应该以哪个连接为准?实际上这也是一个无解的答案,无论以哪个连接为准,在特定场景下都可能存在问题。
综合分析,协商式状态决策在某些场景总是存在一些问题的。
3. 民主式
民主式决策指的是多个独立的个体通过投票的方式来进行状态决策。例如,ZooKeeper 集群在选举 leader 时就是采用这种方式。
民主式决策和协商式决策比较类似,其基础都是独立的个体之间交换信息,每个个体做出自己的决策,然后按照“多数取胜”的规则来确定最终的状态。不同点在于民主式决策比协商式决策要复杂得多,ZooKeeper 的选举算法 Paxos,绝大部分人都看得云里雾里,更不用说用代码来实现这套算法了。
除了算法复杂,民主式决策还有一个固有的缺陷:脑裂。这个词来源于医学,指人体左右大脑半球的连接被切断后,左右脑因为无法交换信息,导致各自做出决策,然后身体受到两个大脑分别控制,会做出各种奇怪的动作。例如:当一个脑裂患者更衣时,他有时会一只手将裤子拉起,另一只手却将裤子往下脱。脑裂的根本原因是,原来统一的集群因为连接中断,造成了两个独立分隔的子集群,每个子集群单独进行选举,于是选出了 2 个主机,相当于人体有两个大脑了。
从图中可以看到,正常状态的时候,节点 5 作为主节点,其他节点作为备节点;当连接发生故障时,节点 1、节点 2、节点 3 形成了一个子集群,节点 4、节点 5 形成了另外一个子集群,这两个子集群的连接已经中断,无法进行信息交换。按照民主决策的规则和算法,两个子集群分别选出了节点 2 和节点 5 作为主节点,此时整个系统就出现了两个主节点。这个状态违背了系统设计的初衷,两个主节点会各自做出自己的决策,整个系统的状态就混乱了。
为了解决脑裂问题,民主式决策的系统一般都采用“投票节点数必须超过系统总节点数一半”规则来处理。如图中那种情况,节点 4 和节点 5 形成的子集群总节点数只有 2 个,没有达到总节点数 5 个的一半,因此这个子集群不会进行选举。这种方式虽然解决了脑裂问题,但同时降低了系统整体的可用性,即如果系统不是因为脑裂问题导致投票节点数过少,而真的是因为节点故障(例如,节点 1、节点 2、节点 3 真的发生了故障),此时系统也不会选出主节点,整个系统就相当于宕机了,尽管此时还有节点 4 和节点 5 是正常的。
综合分析,无论采取什么样的方案,状态决策都不可能做到任何场景下都没有问题,但完全不做高可用方案又会产生更大的问题,如何选取适合系统的高可用方案,也是一个复杂的分析、判断和选择的过程。
小结
分析了计算高可用和存储高可用两个场景,给出了几种高可用状态决策方式
高性能和高可用哪个会更复杂一些?理由是什么?
评论:
需求驱动,面对不同业务系统的不同需求,对高可用与高性能也会有不同的决策结论,复杂度也各不相同。支付宝业务,对于可用性和性能就会有很高的要求,在可用性方面希望能提供7*24不间断服务,在高性能方面则希望能实时收付款;而对于一个学生管理系统,在可用性与性能方面就不一定要有多高的要求,比如晚上可关机,几秒内能查询到信息也可接受。为此,高可用性与高性能的复杂度讨论需要结合业务需求。
1 WHAT - 什么是可用性?
举例:一些知名大型网站的可用性可达到99.99%(俗称4个9),我们可以算一下一年下来留给处理故障的时间有多少?不可用时间=365*24*60*(1-99.99%)=52.56分钟
2 WHY - 为什么会出现不可用?
硬件故障。网站多运行在普通的商用服务器,而这些服务器本身就不具备高可用性,再加之网站系统背后有数量众多服务器,那么一定时间内服务器宕机是大概率事件,直接导致部署在该服务器上的服务受影响。
软件BUG或网站更新升级发布。BUG不能消灭,只能减少;上线后的系统在运行过程中,难免会出现故障,而这些故障同样直接导致某些网站服务不可用;此外,网站更新升级发布也会引起相对较频繁的服务器宕机。
不可抗拒力。如地震、水灾、战争等。
3 HOW - 如何做到高可用
核心思想:服务与数据的冗余备份与失效转移。同一服务组件部署在多台服务器上;数据存储在多台服务器上互相备份
架构角度:分层模型:应用层(逻辑处理)、服务层(可复用)与数据层(数据读写)。在部署架构上常采用应用和数据分离部署,应用会部署到不同服务器上,这些服务器被称为应用层的服务器;这些可复用的服务也会各自部署在不同服务器上,称为服务层的服务器;而各类数据库系统、文件柜等数据则部署在数据层的服务器。
硬件故障解决措施:(1)应用服务器。可通过负载均衡设备将多个应用服务器构建为集群对外提供服务(前提是这些服务需要设计为无状态,即应用服务器不保存业务的上下文信息,而仅根据每次请求提交的数据进行业务逻辑的操作响应),当均衡设备通过心跳检测手段检测到应用服务器不可用时,则将其从集群中移除,并将请求切换到其他可用的应用服务上。(2)服务层服务器。这些服务器被应用层通过分布式服务框架(如Dubbo)访问,分布式服务框架可在应用层客户端程序中实现软件负载均衡,并通过服务注册中心提供服务的服务器进行心跳检测,当发现有服务器不可用时,立即通知客户端程序修改服务列表,同时移除响应的服务器。(3)数据服务器。需要在数据写入时进行数据同步复制,将数据写入多台服务器上,实现数据冗余备份;当数据服务器宕机时,应用程序将访问切换到有备份数据的服务器上。
https://time.geekbang.org/column/article/6895?code=AUrLRd8TNei%2FxdU1t5TFaD6loHopSIhM7Y54CbJuzpo%3D