Description
Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.
For example, given the array [2,3,1,2,4,3]
and s = 7
,
the subarray [4,3]
has the minimal length under the problem constraint.
More practice:
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).
Credits:
Special thanks to @Freezen for adding this problem and creating all test cases.
Solution
Two-pointer, time O(n), space O(1)
class Solution {
public int minSubArrayLen(int s, int[] nums) {
int minLength = Integer.MAX_VALUE;
int i = 0;
int sum = 0;
for (int j = 0; j < nums.length; ++j) {
sum += nums[j];
if (sum < s) {
continue;
}
while (sum - nums[i] >= s) {
sum -= nums[i++];
}
minLength = Math.min(j - i + 1, minLength);
}
return minLength == Integer.MAX_VALUE ? 0 : minLength;
}
}
Binary-search, time O(nlogn), space O(n)
有趣的解法。
public class Solution {
public int minSubArrayLen(int s, int[] nums) {
return solveNLogN(s, nums);
}
private int solveNLogN(int s, int[] nums) {
int[] sums = new int[nums.length + 1];
for (int i = 1; i < sums.length; i++) sums[i] = sums[i - 1] + nums[i - 1];
int minLen = Integer.MAX_VALUE;
for (int i = 0; i < sums.length; i++) {
int end = binarySearch(i + 1, sums.length - 1, sums[i] + s, sums);
if (end == sums.length) break;
if (end - i < minLen) minLen = end - i;
}
return minLen == Integer.MAX_VALUE ? 0 : minLen;
}
private int binarySearch(int lo, int hi, int key, int[] sums) {
while (lo <= hi) {
int mid = (lo + hi) / 2;
if (sums[mid] >= key){
hi = mid - 1;
} else {
lo = mid + 1;
}
}
return lo;
}
}