🧐 pwr | 谁说样本量计算是个老大难问题!?(一)(分类变量篇)

写在前面

估算前瞻性研究样本量是我们在招募受试者之前首先要做的事情之一。😘
招募受试者太少会无法得到准确的答案,招募的太多又是巨大的浪费,所以需要估算最佳的受试者数量。🧐
本期我们介绍一下如何使用pwr包进行样本量的估算。😏

用到的包

rm(list = ls())
library(pwr)
library(tidyverse)

研究假设

假设我们准备进行一个RCT研究,研究Treatment ATreatment B的疗效,结局事件为ResponseNo response二分类结局。🤫
那我们现在就有了研究假设,H_0H_1了:👇

  • H_0: Treatment ATreatment B间结局事件无差异。
  • H_1: Treatment ATreatment B间结局事件有差异。

通常我们还有几个参数需要设置:👇

  • alpha level (通常为two-sided);
  • effect size (h);
  • power (通常为80%)

计算样本量

这里我们需要用到pwr.2p.test函数,我们通常需要设置Treatment ATreatment Bresponse比例,这个大家可以通过既往的文献来查找。😘
如果你做的研究非常新,在过去的文献中找不到的话,可以假设为50%。😂
这里我们假设Treatment A反应率是60%Treatment B反应率是50%,这样Treatment ATreatment B间的response比例就相差了10%,哈哈哈哈。😉

power1 <-pwr.2p.test(h = ES.h(p1 = 0.60, p2 = 0.50), sig.level = 0.05, power = .80)
power1

Note! 需要注意的是这里n只是一个组的数量,实际需要的总数量是需要double的。🤞

Power Analysis

接着是效力分析Power Analysis),主要是用来确定在指定显著性条件下所需要的样本量并评估该实验设计的统计效力。😗
通过Power Analysis,我们也能给出在现有的样本量下该实验结论的可靠性。🤩
如果结论的可靠性非常低,那么几乎可以认为实验是无效的,我们应该修改或者直接终止实验。🫠

plot(power1)

这里我们可以看到power随样本量增加的变化。🤓

改变一下

这个时候我们改一下Treatment A反应率,并且将每组的样本量固定为388α值0.05

p1 <- seq(0.5, 1.0, 0.05)

power1 <-pwr.2p.test(h = ES.h(p1 = p1, p2 = 0.50),
                     n = 388,
                     sig.level = 0.05)

power1

可视化一下可以看到Treatment A反应比例越高,和Treatment B差异越大,power就越大。😏

powerchange <- data.frame(p1, power = power1$power * 100)

plot(powerchange$p1, 
     powerchange$power, 
     type = "b", 
     xlab = "Proportion of Responders in Treatment A", 
     ylab = "Power (%)")

<img src="https://upload-images.jianshu.io/upload_images/24475539-40562ed83cfc1237.png" alt="鲱鱼罐头" style="zoom:25%;" />

<center>最后祝大家早日不卷!~</center>


点个在看吧各位~ ✐.ɴɪᴄᴇ ᴅᴀʏ 〰

<center> <b>📍 往期精彩 <b> </center>

📍 <font size=1>🤩 ComplexHeatmap | 颜狗写的高颜值热图代码!</font>
📍 <font size=1>🤥 ComplexHeatmap | 你的热图注释还挤在一起看不清吗!?</font>
📍 <font size=1>🤨 Google | 谷歌翻译崩了我们怎么办!?(附完美解决方案)</font>
📍 <font size=1>🤩 scRNA-seq | 吐血整理的单细胞入门教程</font>
📍 <font size=1>🤣 NetworkD3 | 让我们一起画个动态的桑基图吧~</font>
📍 <font size=1>🤩 RColorBrewer | 再多的配色也能轻松搞定!~</font>
📍 <font size=1>🧐 rms | 批量完成你的线性回归</font>
📍 <font size=1>🤩 CMplot | 完美复刻Nature上的曼哈顿图</font>
📍 <font size=1>🤠 Network | 高颜值动态网络可视化工具</font>
📍 <font size=1>🤗 boxjitter | 完美复刻Nature上的高颜值统计图</font>
📍 <font size=1>🤫 linkET | 完美解决ggcor安装失败方案(附教程)</font>
📍 <font size=1>......</font>

本文由mdnice多平台发布

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,843评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,538评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,187评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,264评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,289评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,231评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,116评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,945评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,367评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,581评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,754评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,458评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,068评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,692评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,842评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,797评论 2 369
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,654评论 2 354

推荐阅读更多精彩内容