python图像识别

python图像识别一般基础到的就是tesseract了,在爬虫中处理验证码广泛使用。

安装

安装教程网上大都差不多,Windows下确实比较麻烦,涉及到各种路径、环境变量甚至与linux不同的路径分隔符,所以这里的安装是基于Centos7

1. 依赖安装

yum install -y automake autoconf libtool gcc gcc-c++

2. 安装leptonica

Leptonica主要用于图像处理和图像分析

  • 原则上所有的库文件都是可以直接用yum安装的,如果想要具体的某个版本,可以前往官方源下载对应版本然后按照对应方式编译
wget http://www.leptonica.org/source/leptonica-1.74.4.tar.gz
tar -zxvf leptonica-1.74.4.tar.gz
cd leptonica-1.74.4/
 ./configure
make && make install

3. 安装tesseract
其他各版本可以在这里下载并自行编译,也提供直接使用的文件。

yum install tesseract

4. 验证安装

tesseract --version

5. 语言包下载
前往tesseract-ocr/tessdata下载相应的语言包,然后将之移动到tessdata目录下,可以用whereis tesseract查看一下具体的目录,我的是/usr/share/tesseract/tessdata/

mv *.traineddata /usr/local/share/tessdata/

6. 查看目前已下载的语言

tesseract --list-langs

使用

# tesseract
Usage:
  tesseract --help | --help-psm | --help-oem | --version
  tesseract --list-langs [--tessdata-dir PATH]
  tesseract --print-parameters [options...] [configfile...]
  tesseract imagename|stdin outputbase|stdout [options...] [configfile...]

OCR options:
  --tessdata-dir PATH   Specify the location of tessdata path.
  --user-words PATH     Specify the location of user words file.
  --user-patterns PATH  Specify the location of user patterns file.
  -l LANG[+LANG]        Specify language(s) used for OCR.
  -c VAR=VALUE          Set value for config variables.
                        Multiple -c arguments are allowed.
  --psm NUM             Specify page segmentation mode.
  --oem NUM             Specify OCR Engine mode.
NOTE: These options must occur before any configfile.

语法

tesseract imagename outputbase [-l lang] [-psm pagesegmode] [configfile...]

  • imagename:图片名字
  • outputbase:指定输出,如果希望直接输出而不是保存到文件,那么就使用 stdout,否则这个参数将会作为保存结果的文件的前缀
  • -l指定语言文件,默认使用英文
  • tesseract --print-parameters:查看更多参数信息
  • 使用-c指定单项参数的值或者将配置写入配置文件放在命令最后(支持多个配置文件)
  • psm 识别图像的方式

0:定向脚本监测(OSD)
1: 使用OSD自动分页
2 :自动分页,但是不使用OSD或OCR(Optical Character Recognition,光学字符识别)
3 :全自动分页,但是没有使用OSD(默认)
4 :假设可变大小的一个文本列。
5 :假设垂直对齐文本的单个统一块。
6 :假设一个统一的文本块。
7 :将图像视为单个文本行。
8 :将图像视为单个词。
9 :将图像视为圆中的单个词。
10 :将图像视为单个字符。

python中使用

Tesseract安装完成后可以很方便的被Python调用,但是需要pillow和pytesseract的支持。

python中转换

image_to_data(image, lang=None, config='', nice=0, output_type=Output.STRING)

  • image Object,由Tesseract处理的图像的PIL Image/NumPy数组
  • lang String,Tesseract语言代码字符串
  • config String,任何其他配置字符串,例如:config='--psm 6'
  • 语言文件可以叠加,用“+”隔开
  • 我们也可以在这里进行tessdata路径的设置,跟在config里面即可
  • 更多配置包括config和psm都和tesseract类似

实例:

流程: 打开图片,配置,转换,可以通过Image的open或者cv2的imread打开图片,之后对图片进行对比度增强,降噪等处理,效果会好一些。

from PIL import Image
import pytesseract

class Languages:
    CHS = 'chi_sim'
    ENG = 'eng'

def img_to_str(image_path, lang=Languages.ENG):
    return pytesseract.image_to_string(Image.open(image_path), lang)

print(img_to_str('pic/numu.png', lang=Languages.ENG))
print(img_to_str('pic/pro.png', lang=Languages.ENG))
image.png
image.png

总结

  1. 简单的文本识别效果还是不错的,但是设计到多空行、符号等,识别效果就不是太好了,准确度方面可以通过对字库的训练达到想要的效果,之后对获取到的文本利用诸如re等各种库进行操作,其实应用还蛮广泛的。2. 但是它在验证码方面的话效果还是不错的,验证码的话tesserocr也是比较方面的.
  2. 识别中文可能会出现编码错误,这也是识别上的漏洞之一了,网上大佬们所说的改变文本的编码似乎并不能解决问题,所以对长文本图片处理还是不太建议直接转换。
  3. 图文处理也可以借鉴一些各平台的API,百度、腾讯、美团都有支持.
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,335评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,895评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,766评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,918评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,042评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,169评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,219评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,976评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,393评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,711评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,876评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,562评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,193评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,903评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,699评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,764评论 2 351

推荐阅读更多精彩内容