数据转换TFRecord

转自:http://blog.csdn.net/u012759136/article/details/52232266

参考代码:https://github.com/ycszen/TensorFlowLaboratory/blob/master/reading_data/example_tfrecords.py

概述

关于Tensorflow读取数据,官网给出了三种方法:

供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据。

从文件读取数据: 在TensorFlow图的起始, 让一个输入管线从文件中读取数据。

预加载数据: 在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况)。

对于数据量较小而言,可能一般选择直接将数据加载进内存,然后再分batch输入网络进行训练(tip:使用这种方法时,结合yield使用更为简洁,大家自己尝试一下吧,我就不赘述了)。但是,如果数据量较大,这样的方法就不适用了,因为太耗内存,所以这时最好使用tensorflow提供的队列queue,也就是第二种方法从文件读取数据。对于一些特定的读取,比如csv文件格式,官网有相关的描述,在这儿我介绍一种比较通用,高效的读取方法(官网介绍的少),即使用tensorflow内定标准格式——TFRecords

TFRecords

TFRecords其实是一种二进制文件,虽然它不如其他格式好理解,但是它能更好的利用内存,更方便复制和移动,并且不需要单独的标签文件(等会儿就知道为什么了)… …总而言之,这样的文件格式好处多多,所以让我们用起来吧。

TFRecords文件包含了tf.train.Example协议内存块(protocol buffer)(协议内存块包含了字段Features)。我们可以写一段代码获取你的数据, 将数据填入到Example协议内存块(protocol buffer),将协议内存块序列化为一个字符串, 并且通过tf.python_io.TFRecordWriter写入到TFRecords文件。

从TFRecords文件中读取数据, 可以使用tf.TFRecordReader的tf.parse_single_example解析器。这个操作可以将Example协议内存块(protocol buffer)解析为张量。

接下来,让我们开始读取数据之旅吧~

生成TFRecords文件

我们使用tf.train.Example来定义我们要填入的数据格式,然后使用tf.python_io.TFRecordWriter来写入。

importosimporttensorflowastffromPILimportImagecwd = os.getcwd()'''

此处我加载的数据目录如下:

0 -- img1.jpg

img2.jpg

img3.jpg

...

1 -- img1.jpg

img2.jpg

...

2 -- ...

这里的0, 1, 2...就是类别,也就是下文中的classes

classes是我根据自己数据类型定义的一个列表,大家可以根据自己的数据情况灵活运用

...

'''writer = tf.python_io.TFRecordWriter("train.tfrecords")forindex, nameinenumerate(classes):    class_path = cwd + name +"/"forimg_nameinos.listdir(class_path):        img_path = class_path + img_name            img = Image.open(img_path)            img = img.resize((224,224))        img_raw = img.tobytes()#将图片转化为原生bytesexample = tf.train.Example(features=tf.train.Features(feature={"label": tf.train.Feature(int64_list=tf.train.Int64List(value=[index])),'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw]))        }))        writer.write(example.SerializeToString())#序列化为字符串writer.close()

关于ExampleFeature的相关定义和详细内容,我推荐去官网查看相关API。

基本的,一个Example中包含Features,Features里包含Feature(这里没s)的字典。最后,Feature里包含有一个FloatList, 或者ByteList,或者Int64List

就这样,我们把相关的信息都存到了一个文件中,所以前面才说不用单独的label文件。而且读取也很方便。

接下来是一个简单的读取小例子:

forserialized_exampleintf.python_io.tf_record_iterator("train.tfrecords"):    example = tf.train.Example()    example.ParseFromString(serialized_example)    image = example.features.feature['image'].bytes_list.value    label = example.features.feature['label'].int64_list.value# 可以做一些预处理之类的printimage, label


使用队列读取

一旦生成了TFRecords文件,为了高效地读取数据,TF中使用队列(queue)读取数据。

defread_and_decode(filename):#根据文件名生成一个队列filename_queue = tf.train.string_input_producer([filename])    reader = tf.TFRecordReader()    _, serialized_example = reader.read(filename_queue)#返回文件名和文件features = tf.parse_single_example(serialized_example,                                      features={'label': tf.FixedLenFeature([], tf.int64),'img_raw': tf.FixedLenFeature([], tf.string),                                      })    img = tf.decode_raw(features['img_raw'], tf.uint8)    img = tf.reshape(img, [224,224,3])    img = tf.cast(img, tf.float32) * (1./255) -0.5label = tf.cast(features['label'], tf.int32)returnimg, label

之后我们可以在训练的时候这样使用

img, label = read_and_decode("train.tfrecords")#使用shuffle_batch可以随机打乱输入img_batch, label_batch = tf.train.shuffle_batch([img, label],                                                batch_size=30, capacity=2000,                                                min_after_dequeue=1000)init = tf.initialize_all_variables()withtf.Session()assess:    sess.run(init)    threads = tf.train.start_queue_runners(sess=sess)foriinrange(3):        val, l= sess.run([img_batch, label_batch])#我们也可以根据需要对val, l进行处理#l = to_categorical(l, 12)print(val.shape, l)


至此,tensorflow高效从文件读取数据差不多完结了。

恩?等等…什么叫差不多?对了,还有几个注意事项

第一,tensorflow里的graph能够记住状态(state),这使得TFRecordReader能够记住tfrecord的位置,并且始终能返回下一个。而这就要求我们在使用之前,必须初始化整个graph,这里我们使用了函数tf.initialize_all_variables()来进行初始化。

第二,tensorflow中的队列和普通的队列差不多,不过它里面的operation和tensor都是符号型的(symbolic),在调用sess.run()时才执行。

第三,TFRecordReader会一直弹出队列中文件的名字,直到队列为空。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,904评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,581评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,527评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,463评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,546评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,572评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,582评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,330评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,776评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,087评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,257评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,923评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,571评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,192评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,436评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,145评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容