pandas df转dict全解

该to_dict()方法将列名设置为字典键,因此您需要稍微重塑您的DataFrame。将“ID”列设置为索引然后转置DataFrame是实现此目的的一种方法。

to_dict()还接受一个'orient'参数,您需要该参数才能输出每列的值列表。否则,{index: value}将为每列返回表单的字典。

可以使用以下行完成这些步骤:

df.set_index('ID').T.to_dict('list')

{'p': [1, 3, 2], 'q': [4, 3, 2], 'r': [4, 0, 9]}

如果需要不同的字典格式,这里是可能的东方参数的示例。考虑以下简单的DataFrame:

df = pd.DataFrame({'a': ['red', 'yellow', 'blue'], 'b': [0.5, 0.25, 0.125]})

df

    a      b

0 red 0.500

1 yellow 0.250

2 blue 0.125

然后选项如下。

dict - 默认值:列名是键,值是索引的字典:数据对

df.to_dict('dict')

{'a': {0: 'red', 1: 'yellow', 2: 'blue'},

'b': {0: 0.5, 1: 0.25, 2: 0.125}}

list - 键是列名,值是列数据列表

df.to_dict('list')

{'a': ['red', 'yellow', 'blue'],

'b': [0.5, 0.25, 0.125]}

系列 - 比如'list',但值是Series

df.to_dict('series')

{'a': 0 red

  1    yellow

  2      blue

  Name: a, dtype: object, 

'b': 0 0.500

  1    0.250

  2    0.125

  Name: b, dtype: float64}

split - 将列/数据/索引拆分为键,值分别为列名,数据值分别按行和索引标签

df.to_dict('split')

{'columns': ['a', 'b'],

'data': [['red', 0.5], ['yellow', 0.25], ['blue', 0.125]],

'index': [0, 1, 2]}

记录 - 每一行都成为一个字典,其中键是列名,值是单元格中的数据

df.to_dict('records')

[{'a': 'red', 'b': 0.5},

{'a': 'yellow', 'b': 0.25},

{'a': 'blue', 'b': 0.125}]

index - 类似于'records',但是一个字典字典,其中键作为索引标签(而不是列表)

df.to_dict('index')

{0: {'a': 'red', 'b': 0.5},

1: {'a': 'yellow', 'b': 0.25},

2: {'a': 'blue', 'b': 0.125}}

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,240评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,328评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,182评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,121评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,135评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,093评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,013评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,854评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,295评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,513评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,678评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,398评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,989评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,636评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,801评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,657评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,558评论 2 352

推荐阅读更多精彩内容